TBX3 is dynamically expressed in pancreatic organogenesis and fine-tunes regeneration

Papaioannou VE. The t-box gene family: emerging roles in development, Stem cells and cancer. Development. 2014;141(20):3819–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Khan SF, Damerell V, Omar R, Du Toit M, Khan M, Maranyane HM, et al. The roles and regulation of TBX3 in development and disease. Gene. 2020;726:144223.

Article  CAS  PubMed  Google Scholar 

Bertolessi M, Linta L, Seufferlein T, Kleger A, Liebau S. A fresh look on T-Box factor action in early embryogenesis (T-Box factors in early development). Stem Cells Dev. 2015;24:1833–51.

Article  PubMed  Google Scholar 

Frank DU, Carter KL, Thomas KR, Burr RM, Bakker ML, Coetzee WA, et al. Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc Natl Acad Sci U S A. 2012;109:E154–63.

Article  CAS  PubMed  Google Scholar 

Singh R, Hoogaars WM, Barnett P, Grieskamp T, Sameer Rana M, Buermans H, et al. Tbx2 and Tbx3 induce atrioventricular myocardial development and endocardial cushion formation. Cell Mol Life Sci. 2012;69(8):1377–89.

Article  CAS  PubMed  Google Scholar 

Mesbah K, Harrelson Z, Théveniau-Ruissy M, Papaioannou VE, Kelly RG. Tbx3 is required for outflow tract development. Circ Res. 2008;103:743–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar P, Franklin S, Emechebe U, Hu H, Moore B, Lehman C, et al. TBX3 regulates splicing in vivo: a novel molecular mechanism for ulnar-mammary syndrome. PLoS Genet. 2014;10(3):e1004247.

Article  Google Scholar 

Emechebe U, Pavan Kumar P, Rozenberg JM, Moore B, Firment A, Mirshahi T, et al. T-box3 is a ciliary protein and regulates stability of the Gli3 transcription factor to control digit number. Elife. 2016;5:e07897.

Article  PubMed  PubMed Central  Google Scholar 

Lüdtke TH, Rudat C, Wojahn I, Weiss AC, Kleppa MJ, Kurz J, et al. Tbx2 and Tbx3 act downstream of Shh to maintain canonical Wnt signaling during branching morphogenesis of the murine lung. Dev Cell. 2016;39(2):239–53.

Article  PubMed  Google Scholar 

Aydoğdu N, Rudat C, Trowe MO, Kaiser M, Lüdtke TH, Taketo MM, et al. TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. Development. 2018;145(23):dev171827.

Article  PubMed  Google Scholar 

Russell R, Ilg M, Lin Q, Wu G, Lechel A, Bergmann W, et al. A dynamic role of TBX3 in the pluripotency circuitry. Stem Cell Rep. 2015;5:1155–70.

Article  CAS  Google Scholar 

Klingenstein M, Raab S, Achberger K, Kleger A, Liebau S, Linta L. TBX3 knockdown decreases reprogramming efficiency of human cells. Stem Cells Int. 2016;2016:6759343.

Article  PubMed  Google Scholar 

Weidgang CE, Russell R, Tata PR, Kühl SJ, Illing A, Müller M, et al. TBX3 directs cell-fate decision toward mesendoderm. Stem Cell Reports. 2013;1:248–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quarta C, Fisette A, Xu Y, Colldén G, Legutko B, Tseng YT, et al. Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nat Metab. 2019;1(2):222–35.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cioffi M, Vallespinos-Serrano M, Trabulo SM, Fernandez-Marcos PJ, Firment AN, Vazquez BN, et al. MiR-93 controls adiposity via inhibition of Sirt7 and Tbx3. Cell Rep. 2015;12(10):1594–605.

Article  CAS  PubMed  Google Scholar 

Kartikasari AER, Zhou JX, Kanji MS, Chan DN, Sinha A, Grapin-Botton A, et al. The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation. EMBO J. 2013;32(10):1393–408.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lu R, Yang A, Jin Y. Dual functions of T-box 3 (Tbx3) in the control of self-renewal and extraembryonic endoderm differentiation in mouse embryonic stem cells. J Biol Chem. 2011;286:8425–36.

Article  CAS  PubMed  Google Scholar 

Mukherjee S, French DL, Gadue P. Loss of TBX3 enhances pancreatic progenitor generation from human pluripotent stem cells. Stem Cell Reports. 2021;16(11):2617–27.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perkhofer L, Walter K, Costa IG, Carrasco MCR, Eiseler T, Hafner S, et al. Tbx3 fosters pancreatic cancer growth by increased angiogenesis and activin/nodal-dependent induction of stemness. Stem Cell Res. 2016;17:367–78.

Article  CAS  PubMed  Google Scholar 

Arnold F, Mahaddalkar PU, Kraus JM, Zhong X, Bergmann W, Srinivasan D, et al. Functional genomic screening during somatic cell reprogramming identifies DKK3 as a roadblock of organ regeneration. Adv Sci. 2021;8(14):2100626.

Article  CAS  Google Scholar 

Murtaugh LC, Keefe MD. Regeneration and repair of the exocrine pancreas. Annu Rev Physiol. 2015;77:229–49.

Article  CAS  PubMed  Google Scholar 

Fendrich V, Esni F, Garay MVR, Feldmann G, Habbe N, Jensen JN, et al. Hedgehog signaling is required for effective regeneration of exocrine pancreas. Gastroenterology. 2008;135(2):621–31.

Article  CAS  PubMed  Google Scholar 

Siveke JT, Lubeseder-Martellato C, Lee M, Mazur PK, Nakhai H, Radtke F, et al. Notch signaling is required for exocrine regeneration after acute pancreatitis. Gastroenterology. 2008;134(2):544–55.

Article  CAS  PubMed  Google Scholar 

Keefe MD, Wang H, De La OJP, Khan A, Firpo MA, Murtaugh LC. β-catenin is selectively required for the expansion and regeneration of mature pancreatic acinar cells in mice. DMM. Dis Model Mech. 2012;5(4):503–14.

CAS  PubMed  PubMed Central  Google Scholar 

Byrnes LE, Wong DM, Subramaniam M, Meyer NP, Gilchrist CL, Knox SM, et al. Lineage dynamics of murine pancreatic development at single-cell resolution. Nat Commun. 2018;9(1):3922.

Article  PubMed  PubMed Central  Google Scholar 

Tabula Muris Consortium; Overall coordination; Logistical coordination; Organ collection and processing; Library preparation and sequencing; Computational data analysis; Cell type annotation; Writing group; Supplemental text writing group; Principal investigators. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018;562(7727):367–72. https://doi.org/10.1038/s41586-018-0590-4.

Hatano M, Iitsuka Y, Yamamoto H, Dezawa M, Yusa S, Kohno Y, et al. Ncx, a Hox11 related gene, is expressed in a variety of tissues derived from neural crest cells. Anat Embryol (Berl). 1997;195(5):419–25.

Article  CAS  PubMed  Google Scholar 

Shirasawa S, Yunker AMR, Roth KA, Brown GA, Horning S, Korsmeyer SJ. Enx (HOX11L1)-deficient mice develop myenteric neuronal hyperplasia and megacolon. Nat Med. 1997;3(6):646–50.

Article  CAS  PubMed  Google Scholar 

Philippi A, Heller S, Costa IG, Senée V, Breunig M, Li Z, et al. Mutations and variants of ONECUT1 in diabetes. Nat Med. 2021. https://doi.org/10.1038/s41591-021-01502-7.

Heller S, Li Z, Lin Q, Geusz R, Breunig M, Hohwieler M, et al. Transcriptional changes and the role of ONECUT1 in hPSC pancreatic differentiation. Commun Biol. 2021;4(1):1298.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Burlison JS, Long Q, Fujitani Y, Wright CVE, Magnuson MA. Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev Biol. 2008;316(1):74–86.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haumaitre C, Barbacci E, Jenny M, Ott MO, Gradwohl G, Cereghini S. Lack of TCF2/vHNF1 in mice leads to pancreas agenesis. Proc Natl Acad Sci U S A. 2005;102(5):1490–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. 2002;129(10):2447–57.

Article  CAS  PubMed  Google Scholar 

Henseleit KD, Nelson SB, Kuhlbrodt K, Hennings JC, Ericson J, Sander M. NKX6 transcription factor activity is required for α- and β-cell development in the pancreas. Development. 2005;132(13):3139–49.

Article  CAS  PubMed  Google Scholar 

Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CVE. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32(1):128–34.

Article  CAS  PubMed  Google Scholar 

Gonçalves CA, Larsen M, Jung S, Stratmann J, Nakamura A, Leuschner M, et al. A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nat Commun. 2021;12(1):3144. Available from: http://www.nature.com/articles/s41467-021-23295-6.

Wiedenmann S, Breunig M, Merkle J, von Toerne C, Georgiev T, Moussus M, et al. Single-cell-resolved differentiation of human induced pluripotent stem cells into pancreatic duct-like organoids on a microwell chip. Nat Biomed Eng. 2021;5(8):897–913. https://doi.org/10.1038/s41551-021-00757-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Washkowitz AJ, Gavrilov S, Begum S, Papaioannou VE. Diverse functional networks of Tbx3 in development and disease. Wiley Interdiscip Rev Syst Biol Med. 2012;4:273–83.

留言 (0)

沒有登入
gif