Gene augmentation for autosomal dominant retinitis pigmentosa using rhodopsin genomic loci nanoparticles in the P23H+/− knock-in murine model

Phelan JK, Bok D. A brief review of retinitis pigmentosa and the identified retinitis pigmentosa genes. Mol Vis. 2000;6:116–24.

CAS  PubMed  Google Scholar 

Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. The Lancet. 2006;368:1795–809.

Article  CAS  Google Scholar 

Daiger SP, Bowne SJ, Sullivan LS. Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol. 2007;125:151–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sahel JA, Marazova K, Audo I. Clinical characteristics and current therapies for inherited retinal degenerations. Cold Spring Harb Perspect Med. 2014;5:a017111.

Article  PubMed  Google Scholar 

Ayuso C, Millan JM. Retinitis pigmentosa and allied conditions today: a paradigm of translational research. Genome Med. 2010;2:34.

Article  PubMed  PubMed Central  Google Scholar 

Sudharsan R, Beltran WA. Progress in gene therapy for rhodopsin autosomal dominant retinitis pigmentosa. Retinal Degenerative Diseases: Springer; 2019. p. 113–8.

Palczewski K. G protein–coupled receptor rhodopsin. Annu Rev Biochem. 2006;75:743–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Filipek S, Stenkamp RE, Teller DC, Palczewski K. G protein-coupled receptor rhodopsin: a prospectus. Ann Rev Physiol. 2003;65:851–79.

Article  CAS  Google Scholar 

Hargrave PA. Rhodopsin structure, function, and topography the Friedenwald lecture. Investig Ophthalmol Visual Sci. 2001;42:3–9.

CAS  Google Scholar 

Athanasiou D, Aguila M, Bellingham J, Li W, McCulley C, Reeves PJ, et al. The molecular and cellular basis of rhodopsin retinitis pigmentosa reveals potential strategies for therapy. Prog Retinal Eye Res. 2018;62:1–23.

Article  CAS  Google Scholar 

Sung C-H, Schneider BG, Agarwal N, Papermaster DS, Nathans J. Functional heterogeneity of mutant rhodopsins responsible for autosomal dominant retinitis pigmentosa. Proc Natl Acad Sci. 1991;88:8840–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaushal S, Khorana HG. Structure and function in rhodopsin. 7. Point mutations associated with autosomal dominant retinitis pigmentosa. Biochemistry. 1994;33:6121–8.

Article  CAS  PubMed  Google Scholar 

Gorbatyuk MS, Knox T, LaVail MM, Gorbatyuk OS, Noorwez SM, Hauswirth WW, et al. Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proc Natl Acad Sci. 2010;107:5961–6.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Saliba RS, Munro PM, Luthert PJ, Cheetham ME. The cellular fate of mutant rhodopsin: quality control, degradation and aggresome formation. J Cell Sci. 2002;115:2907–18.

Article  CAS  PubMed  Google Scholar 

Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, et al. IRE1 signaling affects cell fate during the unfolded protein response. Science. 2007;318:944–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Illing ME, Rajan RS, Bence NF, Kopito RR. A rhodopsin mutant linked to autosomal dominant retinitis pigmentosa is prone to aggregate and interacts with the ubiquitin proteasome system. J Biol Chem. 2002;277:34150–60.

Article  CAS  PubMed  Google Scholar 

Chen Y, Jastrzebska B, Cao P, Zhang J, Wang B, Sun W, et al. Inherent instability of the retinitis pigmentosa P23H mutant opsin. J Biol Chem. 2014;289:9288–303.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dryja TP, McGee TL, Hahn LB, Cowley GS, Olsson JE, Reichel E, et al. Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. N Engl J Med. 1990;323:1302–7.

Article  CAS  PubMed  Google Scholar 

Dryja TP, McGee TL, Reichel E, Hahn LB, Cowley GS, Yandell DW, et al. A point mutation of the rhodopsin gene in one form of retinitis pigmentosa. Nature. 1990;343:364–6.

Article  CAS  PubMed  Google Scholar 

Chiang W-C, Kroeger H, Sakami S, Messah C, Yasumura D, Matthes MT, et al. Robust endoplasmic reticulum-associated degradation of rhodopsin precedes retinal degeneration. Mol Neurobiol. 2015;52:679–95.

Article  CAS  PubMed  Google Scholar 

Athanasiou D, Kosmaoglou M, Kanuga N, Novoselov SS, Paton AW, Paton JC, et al. BiP prevents rod opsin aggregation. Mol Biol Cell. 2012;23:3522–31.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Athanasiou D, Bevilacqua D, Aguila M, McCulley C, Kanuga N, Iwawaki T, et al. The co-chaperone and reductase ERdj5 facilitates rod opsin biogenesis and quality control. Human Mol Genet. 2014;23:6594–606.

Article  Google Scholar 

Rajan RS, Kopito RR. Suppression of wild-type rhodopsin maturation by mutants linked to autosomal dominant retinitis pigmentosa. J Biol Chem. 2005;280:1284–91.

Article  CAS  PubMed  Google Scholar 

Haeri M, Knox BE. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes. PLoS One. 2012;7:e30101.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakami S, Maeda T, Bereta G, Okano K, Golczak M, Sumaroka A, et al. Probing mechanisms of photoreceptor degeneration in a new mouse model of the common form of autosomal dominant retinitis pigmentosa due to P23H opsin mutations. J Biol Chem. 2011;286:10551–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lewin AS, Rossmiller B, Mao H. Gene augmentation for adRP mutations in RHO. Cold Spring Harb Perspect Med. 2014;4:a017400.

Article  PubMed  PubMed Central  Google Scholar 

Mao H, Gorbatyuk MS, Rossmiller B, Hauswirth WW, Lewin AS. Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice. Human Gene Ther. 2012;23:356–66.

Article  CAS  Google Scholar 

Mao H, James T Jr, Schwein A, Shabashvili AE, Hauswirth WW, Gorbatyuk MS, et al. AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa. Human Gene Ther. 2011;22:567–75.

Article  CAS  Google Scholar 

Cideciyan AV, Sudharsan R, Dufour VL, Massengill MT, Iwabe S, Swider M, et al. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc Natl Acad Sci. 2018;115:E8547–E56.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chadderton N, Millington-Ward S, Palfi A, O’Reilly M, Tuohy G, Humphries MM, et al. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol Ther. 2009;17:593–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farrar G, Millington-Ward S, Chadderton N, Humphries P, Kenna P. Gene-based therapies for dominantly inherited retinopathies. Gene Ther. 2012;19:137–44.

Article  CAS  PubMed  Google Scholar 

Millington-Ward S, Chadderton N, O’reilly M, Palfi A, Goldmann T, Kilty C, et al. Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther. 2011;19:642–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

O’Reilly M, Palfi A, Chadderton N, Millington-Ward S, Ader M, Cronin T, et al. RNA interference-mediated suppression and replacement of human rhodopsin in vivo. Am J Hum Genet. 2007;81:127–35.

Article  PubMed  PubMed Central  Google Scholar 

Rossmiller B, Mao H, Lewin AS. Gene therapy in animal models of autosomal dominant retinitis pigmentosa. Mol Vision. 2012;18:2479.

CAS  Google Scholar 

Greenwald DL, Cashman SM, Kumar-Singh R. Mutation-independent rescue of a novel mouse model of Retinitis Pigmentosa. Gene Ther. 2013;20:425–34.

Article  CAS  PubMed  Google Scholar 

Hernan I, Gamundi MJ, Borràs E, Maseras M, García-Sandoval B, Blanco-Kelly F, et al. Novel p.M96T variant of NRL and shRNA-based suppression and replacement of NRL mutants associated with autosomal dominant retinitis pigmentosa. Clin Genet. 2012;82:446–52.

Article  CAS  PubMed  Google Scholar 

Sudharsan R, Beltran WA. Progress in gene therapy for rhodopsin autosomal dominant retinitis pigmentosa. Adv Exp Med Biol. 2019;1185:113–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orlans HO, Barnard AR, Patrício MI, McClements ME, MacLaren RE. Effect of AAV-mediated rhodopsin gene augmentation on retinal degeneration caused by the dominant P23H rhodopsin mutation in a knock-in murine model. Human Gene Ther. 2020;31:730–42.

Article  CAS 

留言 (0)

沒有登入
gif