Precision ophthalmology: a call for Africa not to be left in the dark

Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390:849–60. https://doi.org/10.1016/S0140-6736(17)31868-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358:2231–9. https://doi.org/10.1056/nejmoa0802268

Article  CAS  PubMed  Google Scholar 

Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ, et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA. 2008;105:15112–7. https://doi.org/10.1073/pnas.0807027105

Article  PubMed  PubMed Central  Google Scholar 

Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L, et al. Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther. 2008;19:979–90. https://doi.org/10.1089/hum.2008.107

Article  CAS  PubMed  PubMed Central  Google Scholar 

Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358:2240–8. https://doi.org/10.1056/nejmoa0802315

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gange WS, Sisk RA, Besirli CG, Lee TC, Havunjian M, Schwartz H, et al. Perifoveal chorioretinal atrophy after subretinal voretigene neparvovec-rzyl for RPE65-mediated Leber congenital amaurosis. Ophthalmol Retina. 2022;6:58–64. https://doi.org/10.1016/j.oret.2021.03.016

Article  PubMed  Google Scholar 

Fischer MD, Simonelli F, Sahni J, Holz FG, Maier R, Fasser C, et al. Real-world safety and effectiveness of voretigene neparvovec: results up to 2 years from the prospective, registry-based PERCEIVE Study. Biomolecules. 2024;14:122. https://doi.org/10.3390/biom14010122

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ledford H. CRISPR treatment inserted directly into the body for first time. Nature. 2020;579:185. https://doi.org/10.1038/d41586-020-00655-8

Article  CAS  PubMed  Google Scholar 

Press Release: Editas medicine announces clinical data demonstrating proof of concept of EDIT-101 from Phase 1/2 BRILLIANCE trial. 2022. https://ir.editasmedicine.com/news-releases/news-release-details/editas-medicine-announces-clinical-data-demonstrating-proof. Accessed 11 Oct 2023.

Farkas MH, Grant GR, White JA, Sousa ME, Consugar MB, Pierce EA. Transcriptome analyses of the human retina identify unprecedented transcript diversity and 3.5 Mb of novel transcribed sequence via significant alternative splicing and novel genes. BMC Genom. 2013;14:486–99. https://doi.org/10.1186/1471-2164-14-486

Article  Google Scholar 

Hanany M, Rivolta C, Sharon D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc Natl Acad Sci USA. 2020;117:2710–6. https://doi.org/10.1073/pnas.1913179117

Article  CAS  PubMed  PubMed Central  Google Scholar 

Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther. 2010;18:643–50. https://doi.org/10.1038/mt.2009.277

Article  CAS  PubMed  Google Scholar 

Fuller-Carter PI, Basiri H, Harvey AR, Carvalho LS. Focused update on AAV-based gene therapy clinical trials for inherited retinal degeneration. BioDrugs. 2020;34:763–81. https://doi.org/10.1007/s40259-020-00453-8

Article  PubMed  Google Scholar 

Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, et al. Inherited retinal diseases: linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res. 2022;8:101029. https://doi.org/10.1016/j.preteyeres.2021.101029

Article  CAS  Google Scholar 

Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim JW, Brooks M, et al. Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun. 2017;8:14716. https://doi.org/10.1038/ncomms14716

Article  PubMed  PubMed Central  Google Scholar 

Zhu J, Ming C, Fu X, Duan Y, Hoang DA, Rutgard J, et al. Gene and mutation independent therapy via CRISPR-Cas9 mediated cellular reprogramming in rod photoreceptors. Cell Res. 2017;27:830–3. https://doi.org/10.1038/cr.2017.57

Article  CAS  PubMed  PubMed Central  Google Scholar 

Russell SR, Drack AV, Cideciyan AV, Jacobson SG, Leroy BP, Van Cauwenbergh C, et al. Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial. Nat Med. 2022;28:1014–21. https://doi.org/10.1038/s41591-022-01755-w

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henn BM, Cavalli-Sforza LL, Feldman MW. The great human expansion. Proc Natl Acad Sci USA. 2012;109:17758–64. https://doi.org/10.1073/pnas.1212380109

Article  PubMed  PubMed Central  Google Scholar 

Choudhury A, Ramsay M, Hazelhurst S, Aron S, Bardien S, Botha G, et al. Whole-genome sequencing for an enhanced understanding of genetic variation among South Africans. Nat Commun. 2017;8:2062. https://doi.org/10.1038/s41467-017-00663-9

Article  CAS  PubMed  PubMed Central  Google Scholar 

1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74. https://doi.org/10.1038/nature15393

Article  CAS  Google Scholar 

Retshabile G, Mlotshwa BC, Williams L, Mwesigwa S, Mboowa G, Huang Z, et al. Whole-exome sequencing reveals uncaptured variation and distinct ancestry in the southern African population of Botswana. Am J Hum Genet. 2018;102:731–43. https://doi.org/10.1016/j.ajhg.2018.03.010

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sherman RM, Forman J, Antonescu V, Puiu D, Daya M, Rafaels N, et al. Assembly of a pan-genome from deep sequencing of 910 humans of African descent. Nat Genet. 2019;51:30–5. https://doi.org/10.1038/s41588-018-0273-y

Article  CAS  PubMed  Google Scholar 

Choudhury A, Aron S, Botigué LR, Sengupta D, Botha G, Bensellak T, et al. High-depth African genomes inform human migration and health. Nature. 2020;586:741–8. https://doi.org/10.1038/s41586-020-2859-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lumaka A, Carstens N, Devriendt K, Krause A, Kulohoma B, Kumuthini J, et al. Increasing African genomic data generation and sharing to resolve rare and undiagnosed diseases in Africa: a call-to-action by the H3Africa rare diseases working group. Orphanet J Rare Dis. 2022;17:230. https://doi.org/10.1186/s13023-022-02391-w

Article  PubMed  PubMed Central  Google Scholar 

Fieggen K, Milligan C, Henderson B, Esterhuizen AI. Bardet Biedl syndrome in South Africa: a single founder mutation. S Afr Med J. 2016;106:S72–4. https://doi.org/10.7196/SAMJ.2016.v106i6.11000

Article  CAS  PubMed  Google Scholar 

Roberts L, George S, Greenberg J, Ramesar RS. A founder mutation in MYO7A underlies a significant proportion of Usher syndrome in indigenous South Africans: implications for the African diaspora. Investig Ophthalmol Vis Sci. 2015;56:6671–8. https://doi.org/10.1167/iovs.15-17028

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif