Dynamic interaction of injected liquid jet with skin layer interfaces revealed by microsecond imaging of optically cleared ex vivo skin tissue model

Love AS, Love RJ. Considering needle phobia among adult patients during mass COVID-19 vaccinations. J Prim Care Community Health. 2021;12:1–4.

Article  Google Scholar 

Freeman D, Lambe S, Yu LM, Freeman J, Chadwick A, Vaccari C, Waite F, Rosebrock L, Petit A, Vanderslott S, et al. Injection fears and COVID-19 vaccine hesitancy. Psychol Med. 2021;11:1–11.

Article  Google Scholar 

Schramm J, Mitragotri S. Transdermal drug delivery by jet injectors: Energetics of jet formation and penetration. Pharm Res. 2002;19:1673–9.

Article  Google Scholar 

Mohizin A, Kim JK. Current engineering and clinical aspects of needle-free injectors: A review. J Mech Sci Technol. 2018;32:5737–47.

Article  Google Scholar 

Baker AB, Sanders JE. Fluid mechanics analysis of a spring-loaded jet injector. IEEE Trans Biomed Eng. 1999;46:235–42.

Article  Google Scholar 

Schoubben A, Cavicchi A, Barberini L, Faraon A, Berti M, Ricci M, Blasi P, Postrioti L. Dynamic behavior of a spring-powered micronozzle needle-free injector. Int J Pharm. 2015;491:91–8.

Article  Google Scholar 

Zeng D, Kang Y, Xie L, Xia X, Wang Z, Liu W. A mathematical model and experimental verification of optimal nozzle diameter in needle-free injection. J Pharm Sci. 2018;107:1086–94.

Article  Google Scholar 

Rohilla P, Lawal I, Le Blanc A, O’Brien V, Weeks C, Tran W, Rane Y, Khusnatdinov E, Marston J. Loading effects on the performance of needle-free jet injections in different skin models. J Drug Deliv Sci Technol. 2020;60:102043.

Article  Google Scholar 

Marston JO, Lacerda CMR. Characterization of jet injection efficiency with mouse cadavers. J Control Release. 2019;305:101–9.

Article  Google Scholar 

Simmons JA, Davis J, Thomas J, Lopez J, le Blanc A, Allison H, Slook H, Lewis P, Holtz J, Fisher P, et al. Characterization of skin blebs from intradermal jet injection: Ex-vivo studies. J Control Release. 2019;307:200–10.

Article  Google Scholar 

Rohilla P, Rane YS, Lawal I, le Blanc A, Davis J, Thomas JB, Weeks C, Tran W, Fisher P, Broderick KE, et al. Characterization of jets for impulsively-started needle-free jet injectors: Influence of fluid properties. J Drug Deliv Sci Technol. 2019;53:101167.

Article  Google Scholar 

Zeng D, Wu N, Xie L, Xia X, Kang Y. An experimental study of a spring-loaded needle-free injector: Influence of the ejection volume and injector orifice diameter. J Mech Sci Technol. 2019;33:5581–8.

Article  Google Scholar 

Rohilla P, Marston JO. In-vitro studies of jet injections. Int J Pharm. 2019;568:118503.

Article  Google Scholar 

Zeng D, Wu N, Qian L, Shi H, Kang Y. Experimental investigation on penetration performance of larger volume needle-free injection device. J Mech Sci Technol. 2020;34:3897–909.

Article  Google Scholar 

Bik L, van Doorn MBA, Biskup E, Ortner VK, Haedersdal M, Olesen UH. Electronic pneumatic injection-assisted dermal drug delivery visualized by ex vivo confocal microscopy. Lasers Surg Med. 2020;53:141–7.

Article  Google Scholar 

Kim HJ, Han S, Park AY, Kim H, Hong GW, Lim ES, Cho SB. Pneumatic injection therapy-induced transcutaneous penetration of hypertonic glucose solution: Macro- and microscopic analyses of human and rat tissues. Medical Lasers. 2018;7:13–20.

Article  Google Scholar 

Mohizin A, Kim JK. Effect of geometrical parameters on the fluid dynamics of air-powered needle-free jet injectors. Comput Biol Med. 2020;118:103642.

Article  Google Scholar 

Portaro R, Ng HD. Experiments and modeling of air-powered needle-free liquid injectors. J Med Biol Eng. 2015;35:685–95.

Article  Google Scholar 

Nakayama H, Portaro R, Kiyanda CB, Ng HD. CFD modeling of high speed liquid jets from an air-powered needle-free injection system. J Mech Med Biol. 2016;16:1650045.

Article  Google Scholar 

Grant TM, Stockwell KD, Morrison JB, Mann DD. Effect of pressure, volume and density on the jet dispersion of needle-free injection devices. Biosyst Eng. 2015;8:4–9.

Google Scholar 

Mohizin A, Roy KER, Lee D, Lee SK, Kim JK. Computational fluid dynamics of impinging microjet for a needle-free skin scar treatment system. Comput Biol Med. 2018;101:61–9.

Article  Google Scholar 

McKeage JW, Ruddy BP, Nielsen PMF, Taberner AJ. The effect of jet speed on large volume jet injection. J Control Release. 2018;280:51–7.

Article  Google Scholar 

Ruddy BP, Bullen C, Chu JTW, Jeong SH, Madadkhahsalmassi B, McKeage JW, Svirskis D, Tingle MD, Xu J, Taberner AJ. Subcutaneous nicotine delivery via needle-free jet injection: a porcine model. J Control Release. 2019;306:83–8.

Article  Google Scholar 

Taberner A, Hogan NC, Hunter IW. Needle-free jet injection using real-time controlled linear Lorentz-force actuators. Med Eng Phys. 2012;34:1228–35.

Article  Google Scholar 

Williams RMJ, Hogan NC, Nielsen PMF, Hunter IW, Taberner AJ. A computational model of a controllable needle-free jet injector. Proc Int Conf IEEE Eng Med Biol Soc. 2012;2012:2052–5.

Google Scholar 

Ruddy BP, Dixon AW, Williams RMJ, Taberner AJ. Optimization of portable electronically controlled needle-free jet injection systems. IEEE/ASME Trans Mechatron. 2017;22:2013–21.

Article  Google Scholar 

Hemond BD, Wendell DM, Hogan NC, Taberner AJ, Hunter IW. A Lorentz-force actuated autoloading needle-free injector. Proc Int Conf IEEE Eng Med Biol Soc. 2006;2006:679–82.

Article  Google Scholar 

Chang JH, Hogan NC, Hunter IW. A needle-free technique for interstitial fluid sample acquisition using a Lorentz-force actuated jet injector. J Control Release. 2015;211:37–43.

Article  Google Scholar 

Portaro R, Ng HD. Design and analysis: Servo-tube-powered liquid jet injector for drug delivery applications. Appl Sci. 2022;12:6920.

Article  Google Scholar 

Stachowiak JC, Li TH, Arora A, Mitragotri S, Fletcher DA. Dynamic control of needle-free jet injection. J Control Release. 2009;135:104–12.

Article  Google Scholar 

Stachowiak JC, von Muhlen MG, Li TH, Jalilian L, Parekh SH, Fletcher DA. Piezoelectric control of needle-free transdermal drug delivery. J Control Release. 2007;124:88–97.

Article  Google Scholar 

Shergold OA, Fleck NA. Mechanisms of deep penetration of soft solids, with application to the injection and wounding of skin. Proc Royal Soc London Series A: Math, Phys Eng Sci. 2004;460:3037–58.

Article  MATH  Google Scholar 

Schoppink J, Rivas DF. Jet injectors: Perspectives for small volume delivery with lasers. Adv Drug Deliv Rev. 2022;182:114109.

Article  Google Scholar 

Shrestha P, Stoeber B. Fluid absorption by skin tissue during intradermal injections through hollow microneedles. Sci Rep. 2018;8:13749.

Article  Google Scholar 

Kendall MAF. The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system. Shock Waves. 2002;12:23–30.

Article  Google Scholar 

Schramm-Baxter J, Mitragotri S. Needle-free jet injections: Dependence of jet penetration and dispersion in the skin on jet power. J Control Release. 2004;97:527–35.

Article  Google Scholar 

Seok J, Oh CT, Kwon HJ, Kwon TR, Choi EJ, Choi SY, Mun SK, Han S-H, Kim BJ, Kim MN. Investigating skin penetration depth and shape following needle-free injection at different pressures: A cadaveric study. Lasers Surg Med. 2016;48:624–8.

Article  Google Scholar 

Park G, Modak A, Hogan NC, Hunter IW. The effect of jet shape on jet injection. Proc Int Conf IEEE Eng Med Biol Soc. 2015;2015:7350–3.

Google Scholar 

Repici A, Maselli R, Carrara S, Anderloni A, Enderle M, Hassan C. Standard needle versus needleless injection modality: animal study on different fluids for submucosal elevation. Gastrointest Endosc. 2017;86:553–8.

Article  Google Scholar 

Chen K, Zhou H, Li J, Cheng GJ. A model on liquid penetration into soft material with application to needle-free jet injection. J Biomech Eng. 2010;132:101005.

Article  Google Scholar 

Baxter J, Mitragotri S. Jet-induced skin puncture and its impact on needle-free jet injections: Experimental studies and a predictive model. J Control Release. 2005;106:361–73.

Article  Google Scholar 

Michinaka Y, Mitragotri S. Delivery of polymeric particles into skin using needle-free liquid jet injectors. J Control Release. 2011;153:249–54.

Article  Google Scholar 

Schramm-Baxter J, Katrencik J, Mitragotri S. Jet injection into polyacrylamide gels: Investigation of jet injection mechanics. J Biomech. 2004;37:1181–8.

Article  Google Scholar 

Baxter J, Mitragotri S. Needle-free liquid jet injections: mechanisms and applications. Expert Rev Med Devices. 2006;3:565–74.

Article  Google Scholar 

Mohizin A, Kim JK. Dispersion profile of a needle-free jet injection depends on the interfacial property of the medium. Drug Deliv Transl Res. 2022;12:384–94.

Article  Google Scholar 

Mohizin A, Lee D, Kim JK. Impact of the mechanical properties of penetrated media on the injection characteristics of needle-free jet injection. Exp Therm Fluid Sci. 2021;126:110396.

Article  Google Scholar 

Mercuri M, Rivas DF. Challenges and opportunities for small volumes delivery into the skin. Biomicrofluidics. 2021;15:011301.

Article  Google Scholar 

Berrospe Rodríguez C, Visser CW, Schlautmann S, Rivas DF, Ramos-García R. Toward jet injection by continuous-wave laser cavitation. J Biomed Opt. 2017;22:105003.

Article  Google Scholar 

Oyarte Gálvez L, Brió Pérez M, Fernández Rivas D. High speed imaging of solid needle and liquid micro-jet injections. J Appl Phys. 2019;125:144504.

Article  Google Scholar 

Jang H, Hur E, Kim Y, Lee SH, Kang NG, Yoh JJ. Laser-induced microjet injection into preablated skin for more effective transdermal drug delivery. J Biomed Opt. 2014;19:118002.

Article  Google Scholar 

Kwon TR, Seok J, Jang JH, Kwon MK, Oh CT, Choi EJ, Hong HK, Choi YS, Bae J, Kim BJ. Needle-free jet injection of hyaluronic acid improves skin remodeling in a mouse model. Eur J Pharm and Biopharm. 2016;105:69–74.

Article  Google Scholar 

Rohilla P, Marston J. Feasibility of laser induced jets in needle free jet injections. Int J Pharm. 2020;589:119714.

Article 

留言 (0)

沒有登入
gif