Enhanced therapeutic potential of antibody fragment via IEDDA-mediated site-specific albumin conjugation

Berger M, Shankar V, Vafai A. Therapeutic applications of monoclonal antibodies. Am J Med Sci. 2002:14–30.

Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018:15–32.

Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol. 2013.

Horwitz AH, Chang CP, Better M, Hellstrom KE, Robinson RR. Secretion of functional antibody and fab fragment from yeast cells. Proc Natl Acad Sci U S A. 1988;85:8678–82.

Article  Google Scholar 

Ogunjimi AA, Chandler JM, Gooding CM, Recinos AI, Choudary PV. High-level secretory expression of immunologically active intact antibody from the yeast Pichia pastoris. Biotechnol Lett. 1999;21:561–7.

Article  Google Scholar 

Wang X, Mathieu M, Brezski RJ. IgG fc engineering to modulate antibody effector functions. Protein Cell. 2018:63–73.

Yokota T, Milenic DE, Whitlow M, Schlom J. Rapid Tumor Penetration of a single-chain fv and comparison with other Immunoglobulin forms. Cancer Res. 1992;52:3402–8.

Google Scholar 

Better M, Chang CP, Robinson RR, Horwitz AH. Escherichia coli secretion of an active chimeric antibody fragment. Science (1979). 1988;240:1041–3.

Gupta SK, Shukla P. Microbial platform technology for recombinant antibody fragment production: a review. Crit Rev Microbiol. 2017:31–42.

Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, Fraga-Pérez K, Flores-Martínez LF, Mateos-Chávez AA et al. Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers (Basel). 2022:4206.

Batra SK, Jain M, Wittel UA, Chauhan SC, Colcher D. Pharmacokinetics and biodistribution of genetically engineered antibodies. Curr Opin Biotechnol. 2002:603–8.

Kleinová V, Švecová H, Chaloupková H, Kranda K, Fišer M. Biodistribution of the radiolabeled anti III β-Tubulin scFv fragment in mice. AIP Conf Proc. 2007:288–9.

Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol. 2005:1126–36.

Schneider EL, Hearn BR, Pfaff SJ, Fontaine SD, Reid R, Ashley GW, et al. Approach for Half-Life extension of small antibody fragments that does not affect tissue uptake. Bioconjug Chem. 2016;27:2534–6.

Article  Google Scholar 

Hutt M, Färber-Schwarz A, Unverdorben F, Richter F, Kontermann RE. Plasma half-life extension of small recombinant antibodies by fusion to immunoglobulin-binding domains. J Biol Chem. 2012;287:4462–9.

Article  Google Scholar 

Yang B, Lim SI, Kim JC, Tae G, Kwon I. Site-specific albumination as an alternative to PEGylation for the enhanced serum half-life in vivo. Biomacromolecules. 2016;17:1811–7.

Article  Google Scholar 

Selis F, Focà G, Sandomenico A, Marra C, Di Mauro C, Jotti GS, et al. Pegylated trastuzumab fragments acquire an increased in vivo stability but show a largely reduced affinity for the target antigen. Int J Mol Sci. 2016;17:491.

Article  Google Scholar 

Shiraishi K, Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review. Sci Technol Adv Mater. 2019:324–36.

Hu X, Miller L, Richman S, Hitchman S, Glick G, Liu S, et al. A novel PEGylated interferon beta-1a for multiple sclerosis: safety, pharmacology, and biology. J Clin Pharmacol. 2012;52:798–808.

Article  Google Scholar 

Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:655–77.

Article  Google Scholar 

Pasut G, Zalipsky S. Polymer-protein conjugates: from pegylation and beyond. Polymer-Protein Conjugates: From Pegylation and Beyond; 2019.

Google Scholar 

Kozma GT, Shimizu T, Ishida T, Szebeni J, Anti. -PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv Drug Deliv Rev. 2020:163–75.

Verhoef JJF, Anchordoquy TJ. Questioning the use of PEGylation for drug delivery. Drug Deliv Transl Res. 2013:499–503.

Conover C, Lejeune L, Linberg R, Shum K, Shorr RGL. Transitional vacuole formation following a bolus infusion of PEG-hemoglobin in the rat. Artif Cells Blood Substit Immobil Biotechnol. 1996;24:599–611.

Article  Google Scholar 

Bendele A, Seely J, Richey C, Sennello G, Shopp G. Short communication: renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicol Sci. 1998;42:152–7.

Article  Google Scholar 

Bern M, Sand KMK, Nilsen J, Sandlie I, Andersen JT. The role of albumin receptors in regulation of albumin homeostasis: implications for drug delivery. J Controlled Release. 2015:144–62.

Dennis MS, Zhang M, Gloria Meng Y, Kadkhodayan M, Kirchhofer D, Combs D, et al. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem. 2002;277:35035–43.

Article  Google Scholar 

Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochim Biophys Acta Gen Subj. 2013:5526–34.

Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Controlled Release. 2008;132:171–83.

Article  Google Scholar 

Chaudhury C, Brooks CL, Carter DC, Robinson JM, Anderson CL. Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry. 2006;45:4983–90.

Article  Google Scholar 

Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, et al. The major histocompatibility complex-related fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med. 2003;197:315–22.

Article  Google Scholar 

Elsadek B, Kratz F. Impact of albumin on drug delivery - new applications on the horizon. J Controlled Release. 2012:4–28.

Yang B, Kim JC, Seong J, Tae G, Kwon I. Comparative studies of the serum half-life extension of a protein: Via site-specific conjugation to a species-matched or -mismatched albumin. Biomater Sci. 2018;6.

Ryan S, Kell AJ, Van Faassen H, Tay LL, Simard B, MacKenzie R, et al. Single-domain antibody-nanoparticles: promising architectures for increased Staphylococcus aureus detection specificity and sensitivity. Bioconjug Chem. 2009;20:1966–74.

Article  Google Scholar 

Steinhauser I, Spänkuch B, Strebhardt K, Langer K. Trastuzumab-modified nanoparticles: optimisation of preparation and uptake in cancer cells. Biomaterials. 2006;27:4975–83.

Article  Google Scholar 

Fontaine SD, Reid R, Robinson L, Ashley GW, Santi DV. Long-term stabilization of maleimide-thiol conjugates. Bioconjug Chem. 2015;26:145–52.

Article  Google Scholar 

Hermanson GT. Bioconjugate Techniques. third. Bioconjugate Techniques. 2008.

Acchione M, Kwon H, Jochheim CM, Atkins WM. Impact of linker and conjugation chemistry on antigen binding, fc receptor binding and thermal stability of model antibody-drug conjugates. MAbs. 2012;4.

Nadkarni DV, Lee J, Jiang Q, Patel V, Sriskanda V, Dutta K et al. Impact of Drug Conjugation and Loading on Target Antigen binding and cytotoxicity in cysteine antibody-drug conjugates. Mol Pharm. 2021;18.

Sun MMC, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody bisulfides. Bioconjug Chem. 2005;16.

Oliveira BL, Guo Z, Bernardes GJL. Inverse electron demand diels-alder reactions in chemical biology. Chem Soc Rev. 2017:4895–950.

Porte K, Riberaud M, Châtre R, Audisio D, Papot S, Taran F. Bioorthogonal Reactions in Animals. ChemBioChem. 2021:100–13.

Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie - International Edition. 2001:2004–21.

Yang B, Kwon K, Jana S, Kim S, Avila-Crump S, Tae G, et al. Temporal control of efficient in vivo Bioconjugation using a genetically encoded tetrazine-mediated inverse-Electron-demand diels-Alder reaction. Bioconjug Chem. 2020;31:2456–64.

Article  Google Scholar 

Blackman ML, Royzen M, Fox JM. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand diels-Alder reactivity. J Am Chem Soc. 2008;130:13518–9.

Article  Google Scholar 

Kwon NH, Lee JH, Kwon I. Computation-aided design of albumin affibody-inserted antibody fragment for the prolonged serum half-life. Pharmaceutics. 2022;14:1769.

Article  Google Scholar 

Chiu ML, Goulet DR, Teplyakov A, Gilliland GL. Antibody structure and function: the basis for engineering therapeutics. Antibodies. 2019:55.

Chaudhury S, Lyskov S, Gray JJ. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics. 2010:689–91.

Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H, et al. The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017;13:3031–48.

Article  Google Scholar 

Leman JK, Weitzner BD, Lewis SM, Adolf-Bryfogle J, Alam N, Alford RF et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat Methods. 2020:665–80.

Baek M, Aniscchenko I, Ian RH, Qian C, David B, Frank D. Efficient and accurate prediction of protein structures and interactions using RoseTTAFold2. Acta Crystallogr Found Adv. 2023;78.

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.

Article  Google Scholar 

Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science (1979). 2021;373:871–6.

AlQuraishi M. Machine learning in protein structure prediction. Curr Opin Chem Biol. 2021:1–8.

Pearce R, Zhang Y. Deep learning techniques have significantly impacted protein structure prediction and protein design. Curr Opin Struct Biol. 2021:194–207.

Pakhrin SC, Shrestha B, Adhikari B, Kc DB. Deep learning-based advances in protein structure prediction. Int J Mol Sci. 2021:5553.

Park H, Bradley P, Greisen P, Liu Y, Mulligan VK, Kim DE, et al. Simultaneous Optimization of Biomolecular Energy Functions on features from small molecules and macromolecules. J Chem Theory Comput. 2016;12:6201–12.

Article  Google Scholar 

Plosker GL, Keam SJ, Trastuzumab. A review of its use in the management of HER2-positive metastatic and early-stage breast cancer. Drugs. 2006:449–75.

Namboodiri AM, Pandey JP. Differential inhibition of trastuzumab- and cetuximab-induced cytotoxicity of cancer cells by immunoglobulin G1 expressing different GM allotypes. Clin Exp Immunol. 2011;166:361–5.

Article  Google Scholar 

Gianni L, Pienkowski T, Im YH, Roman L, Tseng LM, Liu MC, et al. Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol. 2012;13:25–32.

Article  Google Scholar 

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19:679–82.

Article  Google Scholar 

Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421:756–60.

Article  Google Scholar 

Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82.

Eigenbrot C, Randal M, Presta L, Carter P, Kossiakoff AA. X-ray structures of the antigen-binding domains from three variants of humanized anti-p185HER2 antibody 4D5 and comparison with molecular modeling. J Mol Biol. 1993;229:969–95.

Article  Google Scholar 

Yang B, Kwon I. Thermostable and long-circulating albumin-conjugated arthrobacter globiformis urate oxidase. Pharmaceutics. 2021;13:1298.

Article  Google Scholar 

Chubarov A, Spitsyna A, Krumkacheva O, Mitin D, Suvorov D, Tormyshev V et al. Reversible dimerization of human serum albumin. Molecules. 2021;26.

Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA et al. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci U S A. 2010;107.

Yang B, Kwon I. Multivalent albumin-neonatal fc receptor interactions mediate a prominent extension of the serum half-life of a therapeutic protein. Mol Pharm. 2021;18.

Hurst S, Ryan AM, Ng CK, McNally JM, Lorello LG, Finch GL et al. Comparative nonclinical assessments of the proposed biosimilar PF-05280014 and trastuzumab (Herceptin®). BioDrugs. 2014;28.

留言 (0)

沒有登入
gif