Promoting osteogenesis and bone regeneration employing icariin-loaded nanoplatforms

Khiyali Z, et al. Smoking, alcohol consumption, drug abuse, and osteoporosis among older adults: a cross-sectional study on PERSIAN cohort study in Fasa. BMC Geriatr. 2024;24(1):80.

Article  Google Scholar 

Boschitsch E, Durchschlag E, Dimai H. Age-related prevalence of osteoporosis and fragility fractures: real-world data from an Austrian Menopause and Osteoporosis Clinic. Climacteric. 2017;20:1–10.

Article  Google Scholar 

Xu Y, et al. Unraveling of Advances in 3D-Printed Polymer-Based Bone Scaffolds. Polymers (Basel). 2022;14(3):566.

Article  Google Scholar 

El Demellawy D, et al. Brief Review on Metabolic Bone Disease. Acad Forensic Pathol. 2018;8(3):611–40.

Article  Google Scholar 

Sözen T, Özışık L, Başaran N. An overview and management of osteoporosis. Eur J Rheumatol. 2017;4(1):46–56.

Article  Google Scholar 

Porter, J.L. and M. Varacallo, Osteoporosis, in StatPearls. 2024, StatPearls PublishingCopyright © 2024, StatPearls Publishing LLC.: Treasure Island (FL) ineligible companies. Disclosure: Matthew Varacallo declares no relevant financial relationships with ineligible companies.

Zhou D, et al. Intra-articular nanodrug delivery strategies for treating osteoarthritis. Drug Discov Today. 2023;28(3):103482.

Article  MathSciNet  Google Scholar 

Hu Y, et al. Single-cell RNA-sequencing analysis reveals the molecular mechanism of subchondral bone cell heterogeneity in the development of osteoarthritis. RMD Open. 2022;8:e002314.

Article  Google Scholar 

Liu M, Meng F, Liang Y. Generalized Pose Decoupled Network for Unsupervised 3D Skeleton Sequence-Based Action Representation Learning. Cyborg Bionic Syst. 2022;2022:0002.

Article  Google Scholar 

Almansouf AS, et al. The Prevalence of Pediatric Lower Limb Fractures Following Motor Vehicle Accidents at King Abdullah Specialist Children’s Hospital, Riyadh, Saudi Arabia. Cureus. 2022;14(9):e28724.

Google Scholar 

Hellwinkel JE, et al. The intersection of fracture healing and infection: Orthopaedics research society workshop 2021. J Orthop Res. 2022;40(3):541–52.

Article  Google Scholar 

Faraji N, et al. Surgical management on a rare type of vertical liner fracture of tibia: A case report study. Int J Surg Case Rep. 2023;110:108692.

Article  Google Scholar 

Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Materials. 2017;2(4):224–47.

Article  Google Scholar 

Venkataiah VS, et al. Clinical Applications of Cell-Scaffold Constructs for Bone Regeneration Therapy. Cells. 2021;10(10):2687.

Article  Google Scholar 

Amirazad H, Dadashpour M, Zarghami N. Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng. 2022;16(1):1.

Article  Google Scholar 

Qiao K, et al. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnol. 2022;20(1):141.

Article  Google Scholar 

Tsiklin IL, et al. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel). 2022;14(15):3222.

Article  Google Scholar 

Zhang Y, et al. Variations in deep iliac circumflex artery perforator chimeric flap design for single-stage customized-reconstruction of composite bone and soft-tissue defect. J Plast Reconstr Aesthet Surg. 2023;87:273–83.

Article  Google Scholar 

Szwed-Georgiou A, et al. Bioactive Materials for Bone Regeneration: Biomolecules and Delivery Systems. ACS Biomater Sci Eng. 2023;9(9):5222–54.

Article  Google Scholar 

Zhang H, et al. Maintaining hypoxia environment of subchondral bone alleviates osteoarthritis progression. Sci Adv. 2023;9(14):eabo7868.

Article  Google Scholar 

Wei H, et al. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Research. 2022;10(1):17.

Article  Google Scholar 

Gai Y, et al. Rational Design of Bioactive Materials for Bone Hemostasis and Defect Repair. Cyborg Bionic Syst. 2023;4:0058.

Article  Google Scholar 

Lin X, et al. The Bone Extracellular Matrix in Bone Formation and Regeneration. Front Pharmacol. 2020;11:757.

Article  Google Scholar 

McWilliam RH, et al. Three-dimensional biofabrication of nanosecond laser micromachined nanofibre meshes for tissue engineered scaffolds. Biomater Transl. 2023;4(2):104–14.

Google Scholar 

Ma H, et al. The genus Epimedium: An ethnopharmacological and phytochemical review. J Ethnopharmacol. 2011;134:519–41.

Article  Google Scholar 

Ke Z, et al. Pharmacology-Based Prediction of the Targets and Mechanisms for Icariin against Myocardial Infarction. Medicina. 2023;59(3):420.

Article  MathSciNet  Google Scholar 

Shindel A.W, et al. Erectogenic and neurotrophic effects of icariin, a purified extract of horny goat weed (Epimedium spp.) in vitro and in vivo. J Sex Med. 2010;7(4 Pt 1):1518–28.

Article  Google Scholar 

Bi Z, Zhang W, Yan X. Anti-inflammatory and immunoregulatory effects of icariin and icaritin. Biomed Pharmacother. 2022;151:113180.

Article  Google Scholar 

Zheng X, et al. Photothermally responsive icariin and carbon nanofiber modified hydrogels for the treatment of periodontitis. Front Bioeng Biotechnol. 2023;11:1207011.

Article  Google Scholar 

Formoso, I., et al., Chapter 1 - Progress of nanotechnology in the development of medicines, in Nanotechnology and Regenerative Medicine, M.H. Santana, E.B. Souto, and R. Shegokar, Editors. 2023, Academic Press. ss1-21.

Cheng G, et al. Extracellular matrix imitation utilizing nanofibers-embedded biomimetic scaffolds for facilitating cartilage regeneration. Chem Eng J. 2021;410:128379.

Article  Google Scholar 

Han S, et al. 3D Electrospun Nanofiber-Based Scaffolds: From Preparations and Properties to Tissue Regeneration Applications. Stem Cells Int. 2021;2021:8790143.

Article  Google Scholar 

Yusuf A, et al. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers. 2023;15(7):1596.

Article  Google Scholar 

Lu Y, et al. Nanomedicine-boosting icaritin-based immunotherapy of advanced hepatocellular carcinoma. Mil Med Res. 2022;9(1):69.

Google Scholar 

Dayanandan AP, et al. Emerging nano-scale delivery systems for the treatment of osteoporosis. Biomater Res. 2023;27(1):68.

Article  Google Scholar 

Zhang SQ, et al. Icariin, a natural flavonol glycoside, extends healthspan in mice. Exp Gerontol. 2015;69:226–35.

Article  Google Scholar 

Ramesh P, et al. Flavonoids: Classification, Function, and Molecular Mechanisms Involved in Bone Remodelling. Front Endocrinol. 2021;12:779638.

Article  Google Scholar 

Chau Y, et al. Exploration of icariin analog structure space reveals key features driving potent inhibition of human phosphodiesterase-5. PLoS One. 2019;14(9):e0222803.

Article  Google Scholar 

Chen KM, et al. Icariin, a flavonoid from the herb Epimedium enhances the osteogenic differentiation of rat primary bone marrow stromal cells. Pharmazie. 2005;60(12):939–42.

Google Scholar 

Wang S, et al. Icariin, an Up-and-Coming Bioactive Compound Against Neurological Diseases: Network Pharmacology-Based Study and Literature Review. Drug Des Devel Ther. 2021;15:3619–41.

Article  Google Scholar 

Wei K, et al. Icariin alters the expression of glucocorticoid receptor, FKBP5 and SGK1 in rat brains following exposure to chronic mild stress. Int J Mol Med. 2016;38:337–44.

Article  Google Scholar 

Seyedi Z, et al. Icariin: A Promising Natural Product in Biomedicine and Tissue Engineering. J Funct Biomater. 2023;14(1):44.

Article  Google Scholar 

Wu H, Kim M, Han J. Icariin Metabolism by Human Intestinal Microflora. Mol. 2016;21(9):1158.

Article  Google Scholar 

Shen R, Wang JH. The effect of icariin on immunity and its potential application. Am J Clin Exp Immunol. 2018;7(3):50–6.

Google Scholar 

Szabó R, Rácz CP, Dulf FV. Bioavailability Improvement Strategies for Icariin and Its Derivates: A Review. Int J Mol Sci. 2022;23(14):7519.

Article  Google Scholar 

Yu X, et al. Nanotherapy for bone repair: milk-derived small extracellular vesicles delivery of icariin. Drug Deliv. 2023;30(1):2169414.

Article  Google Scholar 

Wei Q, et al. Icaritin promotes the osteogenesis of bone marrow mesenchymal stem cells via the regulation of sclerostin expression. Int J Mol Med. 2020;45(3):816–24.

Google Scholar 

Yang A, et al. Mechanism of Action of Icariin in Bone Marrow Mesenchymal Stem Cells. Stem Cells Int. 2019;2019:5747298.

Article  Google Scholar 

Bi Z, Zhang W, Yan X. Anti-inflammatory and immunoregulatory effects of icariin and icaritin. Biomed Pharmacother. 2022;151:113180.

Article  Google Scholar 

Wang F-Y, et al. Icariin protects vascular endothelial cells from oxidative stress through inhibiting endoplasmic reticulum stress. J Integr Med. 2019;17(3):205–12.

Article  Google Scholar 

Ma HP, et al. Icariin attenuates hypoxia-induced oxidative stress and apoptosis in osteoblasts and preserves their osteogenic differentiation potential in vitro. Cell Prolif. 2014;47(6):527–39.

Article  Google Scholar 

Li LR, et al. The neuroprotective effects of icariin on ageing, various neurological, neuropsychiatric disorders, and brain injury induced by radiation exposure. Aging (Albany NY). 2022;14(3):1562–88.

Article  Google Scholar 

Fang J, Zhang Y. Icariin, an Anti-atherosclerotic Drug from Chinese Medicinal Herb Horny Goat Weed. Front Pharmacol. 2017;8:734.

Article  Google Scholar 

Zeng Y, et al. Icariin and its metabolites as potential protective phytochemicals against cardiovascular disease: From effects to molecular mechanisms. Biomed Pharmacother. 2022;147:112642.

Article  Google Scholar 

Ye H, Lou Y. Estrogenic effects of two derivatives of icariin on human breast cancer MCF-7 cells. Phytomedicine. 2005;12(10):735–41.

Article  Google Scholar 

Qin L, et al. Antiosteoporotic chemical constituents from Er-Xian Decoction, a traditional Chinese herbal formula. J Ethnopharmacol. 2008;118(2):271–9.

Article  Google Scholar 

Yap SP, et al. Molecular and pharmacodynamic properties of estrogenic extracts from the traditional Chinese medicinal herb. Epimedium J Ethnopharmacol. 2007;113(2):218–24.

Article 

留言 (0)

沒有登入
gif