Metabolites as signalling molecules

Humphrey, S. J., James, D. E. & Mann, M. Protein phosphorylation: a major switch mechanism for metabolic regulation. Trends Endocrinol. Metab. 26, 676–687 (2015).

Article  CAS  Google Scholar 

Marín-Hernández, Á., Rodríguez-Zavala, J. S., Jasso-Chávez, R., Saavedra, E. & Moreno-Sánchez, R. Protein acetylation effects on enzyme activity and metabolic pathway fluxes. J. Cell. Biochem. 123, 701–718 (2022).

Article  Google Scholar 

Sabari, B. R., Zhang, D., Allis, C. D. & Zhao, Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 18, 90–101 (2017).

Article  CAS  Google Scholar 

Wu, Q., Schapira, M., Arrowsmith, C. H. & Barsyte-Lovejoy, D. Protein arginine methylation: from enigmatic functions to therapeutic targeting. Nat. Rev. Drug. Discov. 20, 509–530 (2021).

Article  CAS  Google Scholar 

Murn, J. & Shi, Y. The winding path of protein methylation research: milestones and new frontiers. Nat. Rev. Mol. Cell Biol. 18, 517–527 (2017).

Article  CAS  Google Scholar 

Husted, A. S., Trauelsen, M., Rudenko, O., Hjorth, S. A. & Schwartz, T. W. GPCR-mediated signaling of metabolites. Cell Metab. 25, 777–796 (2017).

Article  CAS  Google Scholar 

Krebs, H. A. The history of the tricarboxylic acid cycle. Perspect. Biol. Med. 14, 154–172 (1970).

Article  CAS  Google Scholar 

Barnett, J. A. A history of research on yeasts 5: the fermentation pathway. Yeast 20, 509–543 (2003).

Article  CAS  Google Scholar 

Houten, S. M. & Wanders, R. J. A. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation. J. Inherit. Metab. Dis. 33, 469–477 (2010).

Article  CAS  Google Scholar 

Lowry, O. H. & Passonneau, J. V. Kinetic evidence for multiple binding sites on phosphofructokinase. J. Biol. Chem. 241, 2268–2279 (1966).

Article  CAS  Google Scholar 

Kemp, R. G. & Foe, L. G. Allosteric regulatory properties of muscle phosphofructokinase. Mol. Cell. Biochem. 57, 147–154 (1983).

Article  CAS  Google Scholar 

Hue, L. & Taegtmeyer, H. The Randle cycle revisited: a new head for an old hat. Am. J. Physiol. Endocrinol. Metab. 297, E578–E591 (2009).

Article  CAS  Google Scholar 

Icard, P. et al. Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug. Resist. Updat. 59, 100790 (2021).

Article  CAS  Google Scholar 

Van Schaftingen, E., Hue, L. & Hers, H. G. Fructose 2,6-bisphosphate, the probably structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase. Biochem. J. 192, 897–901 (1980).

Article  Google Scholar 

Hers, H. G. & Van Schaftingen, E. Fructose 2,6-bisphosphate 2 years after its discovery. Biochem. J. 206, 1–12 (1982). An insightful history of the discovery and characterization of F2,6BP. It includes reproductions of plots from early experiments.

Article  CAS  Google Scholar 

Uyeda, K., Furuya, E. & Luby, L. The effect of natural and synthetic d-fructose 2,6-bisphosphate on the regulatory kinetic properties of liver and muscle phosphofructokinases. J. Biol. Chem. 256, 8394–8399 (1981).

Article  CAS  Google Scholar 

Hers, H. G. & Van Schaftingen, E. Fructose 2,6-bisphosphate 2 years after its discovery. Biochem. J. 206, 1–12 (1982).

Article  CAS  Google Scholar 

Christophe, J. Glucagon receptors: from genetic structure and expression to effector coupling and biological responses. Biochim. Biophys. Acta 1241, 45–57 (1995).

Article  Google Scholar 

el-Maghrabi, M. R., Claus, T. H., Pilkis, J. & Pilkis, S. J. Regulation of 6-phosphofructo-2-kinase activity by cyclic AMP-dependent phosphorylation. Proc. Natl Acad. Sci. USA 79, 315–319 (1982).

Article  CAS  Google Scholar 

Pilkis, S. J., El-Maghrabi, M. R. & Claus, T. H. Fructose-2,6-bisphosphate in control of hepatic gluconeogenesis: from metabolites to molecular genetics. Diabetes Care 13, 582–599 (1990).

Article  CAS  Google Scholar 

Muller, A., Unthan-Fechner, K. & Probst, I. Activation of phosphofructokinase 2 by insulin in cultured hepatocytes without accompanying changes of effector levels or cAMP-stimulated protein kinase activity ratios. Eur. J. Biochem. 176, 415–420 (1988).

Article  CAS  Google Scholar 

Nishimura, M. & Uyeda, K. Purification and characterization of a novel xylulose 5-phosphate-activated protein phosphatase catalyzing dephosphorylation of fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase. J. Biol. Chem. 270, 26341–26346 (1995).

Article  CAS  Google Scholar 

Morimoto, Y. et al. Insulin pretreatment protects the liver from ischemic damage during Pringle’s maneuver. Surgery 120, 808–815 (1996).

Article  CAS  Google Scholar 

Mokrasch, L. C. & McGilvery, R. W. Purification and properties of fructose-1,6-diphosphatase. J. Biol. Chem. 221, 909–917 (1956).

Article  CAS  Google Scholar 

Van Schaftingen, E. & Hers, H. G. Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-biphosphate. Proc. Natl Acad. Sci. USA 78, 2861–2863 (1981).

Article  Google Scholar 

Bricker Daniel, K. et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337, 96–100 (2012).

Article  CAS  Google Scholar 

Jagannathan, V. & Schweet, R. Pyruvic oxidase of pigeon breast muscle. I. Purification and properties of the enzyme. J. Biol. Chem. 196, 551–562 (1952).

Article  CAS  Google Scholar 

Gudi, R., Melissa, M. B.-K., Kedishvili, N. Y., Zhao, Y. & Popov, K. M. Diversity of the pyruvate dehydrogenase kinase gene family in humans. J. Biol. Chem. 270, 28989–28994 (1995).

Article  CAS  Google Scholar 

Kerbey, A. L. et al. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem. J. 154, 327–348 (1976).

Article  CAS  Google Scholar 

Bowker-Kinley, M. M., Davis, I. W., Wu, P., Harris, A. R. & Popov, M. K. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 329, 191–196 (1998).

Article  CAS  Google Scholar 

Sharma, P., Walsh, K. T., Kerr-Knott, K. A., Karaian, J. E. & Mongan, P. D. Pyruvate modulates hepatic mitochondrial functions and reduces apoptosis indicators during hemorrhagic shock in rats. Anesthesiology 103, 65–73 (2005).

Article  Google Scholar 

Woods, M. & Burk, D. Inhibition of tumor cell glycolysis by DPNH2, and reversal of the inhibition by DPN, pyruvate or methylene blue. Z. f.ür. Naturforsch. B 18, 731–748 (1963).

Article  CAS  Google Scholar 

Huckabee, W. E. Relationships of pyruvate and lactate during anaerobic metabolism. I. Effects of infusion of pyruvate or glucose and of hyperventilation. J. Clin. Invest. 37, 244–254 (1958).

Article  CAS  Google Scholar 

Baumberger, J. P., Jürgensen, J. J. & Bardwell, K. The coupled redox potential of the lactate–enzyme–pyruvate system. J. Gen. Physiol. 16, 961–976 (1933).

Article  CAS  Google Scholar 

O’Carra, P. & Mulcahy, P. Tissue distribution of mammalian lactate dehydrogenase isoenzymes. Biochem. Soc. Trans. 18, 272–274 (1990).

Article  Google Scholar 

Wang, C.-S. Inhibition of human erythrocyte lactate dehydrogenase by high concentrations of pyruvate. Eur. J. Biochem. 78, 569–574 (1977). Experiments demonstrating the inhibition of high levels of pyruvate on human LDHA. The mechanism involves competition with NADH for binding within the active site.

Article  CAS  Google Scholar 

Rao, Y. et al. Excess exogenous pyruvate inhibits lactate dehydrogenase activity in live cells in an MCT1-dependent manner. J. Biol. Chem. 297, (2021).

DeBerardinis Ralph, J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007).

Article  CAS  Google Scholar 

Cohen, P. F. & Colman, R. F. Diphosphopyridine nucleotide dependent isocitrate dehydrogenase from pig heart. Characterization of active substrate and modes of regulation. Biochemistry 11, 1501–1508 (1972).

Article  CAS  Google Scholar 

Gabriel, J. L. & Plaut, G. W. E. Inhibition of bovine heart NAD-specific isocitrate dehydrogenase by reduced pyridine nucleotides: modulation of inhibition by ADP, NAD+, calcium2+, citrate, and isocitrate. Biochemistry 23, 2773–2778 (1984).

Article  CAS  Google Scholar 

Chen, R. F. & Plaut, G. W. E. Activation and inhibition of DPN-linked isocitrate dehydrogenase of heart by certain nucleotides. Biochemistry 2, 1023–1032 (1963).

Article  CAS  Google Scholar 

Roche, T. E. & Lawlis, V. B. Structure and regulation of α-ketoglutarate dehydrogenase of bovine kidney. Ann. N. Y. Acad. Sci. 378, 236–249 (1982).

Article  CAS  Google Scholar 

Smith, C., Bryla, J. & Williamson, J. Regulation of mitochondrial α-ketoglutarate metabolism by product inhibition at α-ketoglutarate dehydrogenase. J. Biol. Chem. 249, 1497–1505 (1974).

Article  CAS  Google Scholar 

Fang, J. et al. Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations. Biochem. J. 363, 81–87 (2002).

Article  CAS  Google Scholar 

Smith, T. J., Peterson, P. E., Schmidt, T., Fang, J. & Stanley, C. A. Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J. Mol. Biol. 307, 707–720 (2001).

Article  CAS 

留言 (0)

沒有登入
gif