Fibroblast and myofibroblast activation in normal tissue repair and fibrosis

Virchow, R. A. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre (Hirschwald, 1858).

Schwann, T. Microscopical Researches into the Accordance in the Structure and Growth of Animals and Plants (English translation by Henry Smith, for the Sydenham Society, 1847) (Sydenham Society, 1839).

Liebert, H. Abhandlungen aus dem Gebiete der praktischen Chirurgie und der pathologischen Physiologie. Nach eigenen Untersuchungen und Erfahrungen und mit besonderer Rücksicht auf die Dieffenbach’sche Klinik in Berlin (Veit, 1849).

Ziegler, E. General Pathology; or, The Science of the Causes, Nature and Course of the Pathological Disturbances which Occur in the Living Subject (W. Wood and Company, 1899).

Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

Article  CAS  PubMed  Google Scholar 

Pakshir, P. et al. The myofibroblast at a glance. J. Cell Sci. 133, jcs227900 (2020).

Article  CAS  PubMed  Google Scholar 

Abercrombie, M., Flint, M. H. & James, D. W. Wound contraction in relation to collagen formation in scorbutic guinea pigs. J. Embryol. Exp. Morphol. 4, 167–175 (1956).

Google Scholar 

Gabbiani, G., Ryan, G. B. & Majno, G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27, 549–550 (1971).

Article  CAS  PubMed  Google Scholar 

Majno, G., Gabbiani, G., Hirschel, B. J., Ryan, G. B. & Statkov, P. R. Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 173, 548–550 (1971).

Article  CAS  PubMed  Google Scholar 

Schuster, R., Younesi, F., Ezzo, M. & Hinz, B. The role of myofibroblasts in physiological and pathological tissue repair. Cold Spring Harb. Perspect. Biol. 15, a041231 (2023).

Article  CAS  PubMed  Google Scholar 

Tallquist, M. D. & Molkentin, J. D. Redefining the identity of cardiac fibroblasts. Nat. Rev. Cardiol. 14, 484–491 (2017).

Article  PubMed  PubMed Central  Google Scholar 

de Oliveira Camargo, R., Abual’anaz, B., Rattan, S. G., Filomeno, K. L. & Dixon, I. M. C. Novel factors that activate and deactivate cardiac fibroblasts: a new perspective for treatment of cardiac fibrosis. Wound Repair Regen. 29, 667–677 (2021).

Article  PubMed  Google Scholar 

Schreibing, F., Anslinger, T. M. & Kramann, R. Fibrosis in pathology of heart and kidney: from deep RNA-sequencing to novel molecular targets. Circ. Res. 132, 1013–1033 (2023).

Article  CAS  PubMed  Google Scholar 

Tacke, F., Puengel, T., Loomba, R. & Friedman, S. L. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH. J. Hepatol. 79, 552–566 (2023).

Article  CAS  PubMed  Google Scholar 

Brugger, M. D. & Basler, K. The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends Cell Biol. 33, 834–849 (2023).

Article  PubMed  Google Scholar 

Wang, J. et al. Novel mechanisms and clinical trial endpoints in intestinal fibrosis. Immunol. Rev. 302, 211–227 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adams, K. L. & Gallo, V. The diversity and disparity of the glial scar. Nat. Neurosci. 21, 9–15 (2018).

Article  CAS  PubMed  Google Scholar 

Moss, B. J., Ryter, S. W. & Rosas, I. O. Pathogenic mechanisms underlying idiopathic pulmonary fibrosis. Annu. Rev. Pathol. 17, 515–546 (2022).

Article  CAS  PubMed  Google Scholar 

Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Layton, T. & Nanchahal, J. Recent advances in the understanding of Dupuytren’s disease. F1000Res 8, 231 (2019).

Article  CAS  Google Scholar 

Wilson, S. E. Corneal myofibroblasts and fibrosis. Exp. Eye Res. 201, 108272 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Powell, S., Irnaten, M. & O’Brien, C. Glaucoma — ‘a stiff eye in a stiff body’. Curr. Eye Res. 48, 152–160 (2023).

Article  PubMed  Google Scholar 

Zeisberg, M. & Duffield, J. S. Resolved: EMT produces fibroblasts in the kidney. J. Am. Soc. Nephrol. 21, 1247–1253 (2010).

Article  PubMed  Google Scholar 

Rock, J. R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl Acad. Sci. USA 108, E1475–E1483 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, J. et al. Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors. Nat. Commun. 12, 2564 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sinha, M. et al. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue. Nat. Commun. 9, 936 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Bucala, R., Spiegel, L. A., Chesney, J., Hogan, M. & Cerami, A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med. 1, 71–81 (1994).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dias, D. O. et al. Pericyte-derived fibrotic scarring is conserved across diverse central nervous system lesions. Nat. Commun. 12, 5501 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Soliman, H. et al. Multipotent stromal cells: one name, multiple identities. Cell Stem Cell 28, 1690–1707 (2021).

Article  CAS  PubMed  Google Scholar 

Wirka, R. C. et al. Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat. Med. 25, 1280–1289 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shook, B. et al. The role of adipocytes in tissue regeneration and stem cell niches. Annu. Rev. Cell Dev. Biol. 6, 609–631 (2016).

Article  Google Scholar 

Rognoni, E. et al. Fibroblast state switching orchestrates dermal maturation and wound healing. Mol. Syst. Biol. 14, e8174 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Jiang, D., Guo, R., Machens, H. G. & Rinkevich, Y. Diversity of fibroblasts and their roles in wound healing. Cold Spring Harb. Perspect. Biol. 15, a041222 (2023).

Article  CAS  PubMed  Google Scholar 

Papayannopoulou, T. G. & Martin, G. M. Alkaline phosphatase “constitutive” clones: evidence for de-novo heterogeneity of established human skin fibroblast strains. Exp. Cell Res. 45, 72–84 (1967).

Article  CAS  PubMed  Google Scholar 

Kisseleva, T. et al. Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc. Natl Acad. Sci. USA 109, 9448–9453 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yao, L. et al. Temporal control of PDGFRα regulates the fibroblast-to-myofibroblast transition in wound healing. Cell Rep. 40, 111192 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scott, R. W., Arostegui, M., Schweitzer, R., Rossi, F. M. V. & Underhill, T. M. Hic1 defines quiescent mesenchymal progenitor subpopulations with distinct functions and fates in skeletal muscle regeneration. Cell Stem Cell 25, 797–813.e9 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abbasi, S. et al. Distinct regulatory programs control the latent regenerative potential of dermal fibroblasts during wound healing. Cell Stem Cell 27, 396–412.e6 (2020).

Article  CAS  PubMed  Google Scholar 

Hagood, J. S. et al. Loss of fibroblast Thy-1 expression correlates with lung fibrogenesis. Am. J. Pathol. 167, 365–379 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fendt, B. M. et al. Protein atlas of fibroblast specific protein 1 (FSP1)/S100A4. Histol. Histopathol. 38, 1391–1401 (2023).

CAS  PubMed  Google Scholar 

Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif