Mechanical state transitions in the regulation of tissue form and function

Kim, S., Pochitaloff, M., Stooke-Vaughan, G. A. & Campas, O. Embryonic tissues as active foams. Nat. Phys. 17, 859–866 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guillot, C. & Lecuit, T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340, 1185–1189 (2013).

Article  CAS  PubMed  Google Scholar 

Tetley, R. J. & Mao, Y. The same but different: cell intercalation as a driver of tissue deformation and fluidity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170328 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Founounou, N. et al. Tissue fluidity mediated by adherens junction dynamics promotes planar cell polarity-driven ommatidial rotation. Nat. Commun. 12, 6974 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, T., Saw, T. B., Mege, R. M. & Ladoux, B. Mechanical forces in cell monolayers. J. Cell Sci. 131, jcs218156 (2018).

Article  PubMed  Google Scholar 

Marinari, E. et al. Live-cell delamination counterbalances epithelial growth to limit tissue overcrowding. Nature 484, 542–545 (2012).

Article  CAS  PubMed  Google Scholar 

Miroshnikova, Y. A. et al. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 20, 69–80 (2018).

Article  CAS  PubMed  Google Scholar 

Rossen, N. S., Tarp, J. M., Mathiesen, J., Jensen, M. H. & Oddershede, L. B. Long-range ordered vorticity patterns in living tissue induced by cell division. Nat. Commun. 5, 5720 (2014).

Article  CAS  PubMed  Google Scholar 

Özkaya, N., Nordin, M., Goldsheyder, D. & Leger, D. (eds) Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation 221–236 (Springer International Publishing, 2012).

Snoeijer, J. H., Pandey, A., Herrada, M. A. & Eggers, J. The relationship between viscoelasticity and elasticity. Proc. Math. Phys. Eng. Sci. 476, 20200419 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Cacopardo, L. & Ahluwalia, A. Engineering and monitoring 3D cell constructs with time-evolving viscoelasticity for the study of liver fibrosis in vitro. Bioengineering 8, 106 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clement, R., Dehapiot, B., Collinet, C., Lecuit, T. & Lenne, P. F. Viscoelastic dissipation stabilizes cell shape changes during tissue morphogenesis. Curr. Biol. 27, 3132–3142.e4 (2017).

Article  CAS  PubMed  Google Scholar 

Duda, M. et al. Polarization of myosin II refines tissue material properties to buffer mechanical stress. Dev. Cell 48, 245–260.e7 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, A. S. et al. Matrix viscoplasticity and its shielding by active mechanics in microtissue models: experiments and mathematical modeling. Sci. Rep. 6, 33919 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Teranishi, A. et al. Epithelial folding irreversibility is controlled by elastoplastic transition via mechanosensitive actin bracket formation. Preprint at bioRxiv https://doi.org/10.1101/2023.12.19.572470 (2024).

Article  Google Scholar 

Zhijie, W., Mark, J. G. & Naomi, C. C. In Viscoelastic and Viscoplastic Materials (ed. Mohamed Fathy, E.-A.) (IntechOpen, 2016).

Bi, D., Lopez, J. H., Schwarz, J. M. & Manning, M. L. A density-independent rigidity transition in biological tissues. Nat. Phys. 11, 1074–1079 (2015).

Article  CAS  Google Scholar 

Lawson-Keister, E. & Manning, M. L. Jamming and arrest of cell motion in biological tissues. Curr. Opin. Cell Biol. 72, 146–155 (2021).

Article  CAS  PubMed  Google Scholar 

Atia, L., Fredberg, J. J., Gov, N. S. & Pegoraro, A. F. Are cell jamming and unjamming essential in tissue development? Cell Dev. 168, 203727 (2021).

Article  CAS  Google Scholar 

Bocanegra-Moreno, L., Singh, A., Hannezo, E., Zagorski, M. & Kicheva, A. Cell cycle dynamics control fluidity of the developing mouse neuroepithelium. Nat. Phys. 19, 1050–1058 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garcia, S. et al. Physics of active jamming during collective cellular motion in a monolayer. Proc. Natl Acad. Sci. USA 112, 15314–15319 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mongera, A. et al. A fluid-to-solid jamming transition underlies vertebrate body axis elongation. Nature 561, 401–405 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Park, J. A. et al. Unjamming and cell shape in the asthmatic airway epithelium. Nat. Mater. 14, 1040–1048 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tetley, R. J. et al. Tissue fluidity promotes epithelial wound healing. Nat. Phys. 15, 1195–1203 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Campàs, O., Noordstra, I. & Yap, A. S. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat. Rev. Mol. Cell Biol. 25, 252–269 (2023).

Article  PubMed  Google Scholar 

Fletcher, D. A. & Mullins, R. D. Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kasza, K. E. et al. The cell as a material. Curr. Opin. Cell Biol. 19, 101–107 (2007).

Article  CAS  PubMed  Google Scholar 

Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

Article  CAS  PubMed  Google Scholar 

Salbreux, G., Charras, G. & Paluch, E. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22, 536–545 (2012).

Article  CAS  PubMed  Google Scholar 

Lappalainen, P., Kotila, T., Jegou, A. & Romet-Lemonne, G. Biochemical and mechanical regulation of actin dynamics. Nat. Rev. Mol. Cell Biol. 23, 836–852 (2022).

Article  CAS  PubMed  Google Scholar 

Curran, S. et al. Myosin II controls junction fluctuations to guide epithelial tissue ordering. Dev. Cell 43, 480–492.e6 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yamamoto, T., Sussman, D. M., Shibata, T. & Manning, M. L. Non-monotonic fluidization generated by fluctuating edge tensions in confluent tissues. Soft Matter 18, 2168–2175 (2022).

Article  CAS  PubMed  Google Scholar 

Matis, M. The mechanical role of microtubules in tissue remodeling. Bioessays 42, e1900244 (2020).

Article  PubMed  Google Scholar 

Takeda, M., Sami, M. M. & Wang, Y. C. A homeostatic apical microtubule network shortens cells for epithelial folding via a basal polarity shift. Nat. Cell Biol. 20, 36–45 (2018).

Article  CAS  PubMed  Google Scholar 

Booth, A. J. R., Blanchard, G. B., Adams, R. J. & Roper, K. A dynamic microtubule cytoskeleton directs medial actomyosin function during tube formation. Dev. Cell 29, 562–576 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Enomoto, T. Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the rho signal cascade. Cell Struct. Funct. 21, 317–326 (1996).

Article  CAS  PubMed  Google Scholar 

Liu, B. P., Chrzanowska-Wodnicka, M. & Burridge, K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhes. Commun. 5, 249–255 (1998).

Article  CAS  PubMed  Google Scholar 

Roper, K. Microtubules enter centre stage for morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190557 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Colin, L. et al. Cortical tension overrides geometrical cues to orient microtubules in confined protoplasts. Proc. Natl Acad. Sci. USA 117, 32731–32738 (2020).

Article  CAS 

留言 (0)

沒有登入
gif