Proteomic signatures of schizophrenia-sourced iPSC-derived neural cells and brain organoids are similar to patients' postmortem brains

Schmidt MJ, Mirnics K. Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology. 2015;40(1):190–206.

Article  PubMed  Google Scholar 

Gonzalez-Pinto A, Gutierrez M, Mosquera F, Ballesteros J, Lopez P, Ezcurra J, et al. First episode in bipolar disorder: misdiagnosis and psychotic symptoms. J Affect Disord. 1998;50(1):41–4.

Article  CAS  PubMed  Google Scholar 

Kohane IS, Masys DR, Altman RB. The incidentalome: a threat to genomic medicine. JAMA. 2006;296(2):212–5.

Article  CAS  PubMed  Google Scholar 

Brennand K, Savas JN, Kim Y, Tran N, Simone A, Hashimoto-Torii K, et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry. 2014;20(3):361–8.

Article  PubMed  PubMed Central  Google Scholar 

Brennand KJ. Personalized medicine in a dish: the growing possibility of neuropsychiatric disease drug discovery tailored to patient genetic variants using stem cells. Stem Cell Investig. 2017;1:91–1.

Article  Google Scholar 

Pedrosa E, Sandler V, Shah A, Carroll R, Chang C, Rockowitz S, et al. Development of patient-specific neurons in schizophrenia using induced pluripotent stem cells. J Neurogen. 2011;25(3):88–103.

Article  CAS  Google Scholar 

Kelava I, Lancaster MA. Stem cell models of human brain development. Cell Stem Cell. 2016;18(6):736–48.

Article  CAS  PubMed  Google Scholar 

Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc. 2014;9(10):2329–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell. 2016;165(5):1238–54.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci USA. 2015;112(51):15672–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nascimento JM, Saia-Cereda VM, Sartore RC, da Costa RM, Schitine CS, Freitas HR, et al. Human cerebral organoids and fetal brain tissue share proteomic similarities. Front Cell Dev Biol. 2019;7:303. https://doi.org/10.3389/fcell.2019.00303.

Article  PubMed  PubMed Central  Google Scholar 

Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473(7346):221–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sochacki J, Devalle S, Reis M, de Moraes Maciel R, da Silveira Paulsen B, Brentani H, et al. Stem Cell Res. 2016;17(1):97–101.

Article  CAS  PubMed  Google Scholar 

Fraga AM, Sukoyan M, Rajan P, Braga D, Iaconelli A Jr, Franco JG, et al. Establishment of a Brazilian line of human embryonic stem cells in defined medium: implications for cell therapy in an ethnically diverse population. Cell Transpl. 2011;20(3):431–40.

Article  Google Scholar 

Baharvand H, Mehrjardi N-Z, Hatami M, Kiani S, Rao M, Haghighi M-M. Neural differentiation from human embryonic stem cells in a defined adherent culture condition. Int J Dev Biol. 2007;51(5):371–8. http://www.ijdb.ehu.es/web/paper/072280hb/neural-differentiation-from-human-embryonic-stem-cells-in-a-defined-adherent-culture-condition

Dakic V, Nascimento JM, Sartore RC, de Moraes MR, Araujo DB, Ribeiro S, et al. Short term changes in the proteome of human cerebral organoids induced by 5-MeO-DMT. Sci Rep. 2017;7(1):12863.

Article  PubMed  PubMed Central  Google Scholar 

Sartore RC, Cardoso SC, Lages YVM, Paraguassu JM, Stelling MP, da Costa RFM, et al. Trace elements during primordial plexiform network formation in human cerebral organoids. PeerJ. 2017;5: e2927.

Article  PubMed  PubMed Central  Google Scholar 

Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501(7467):373–9.

Article  CAS  PubMed  Google Scholar 

Dezonne RS, Sartore RC, Nascimento JM, Saia-Cereda VM, Romão LF, Alves-Leon SV, et al. Derivation of functional human astrocytes from cerebral organoids. Sci Rep. 2017;7:45091.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cassoli JS, Brandao-Teles C, Santana AG, Souza GHMF, Martins-de-Souza D. Ion mobility-enhanced data-independent acquisitions enable a deep proteomic landscape of oligodendrocytes. Proteomics. 2017;17(21):1700209.

Article  Google Scholar 

Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.

Article  PubMed  Google Scholar 

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

Article  CAS  PubMed  Google Scholar 

Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Comms. 2019;10(1):1523.

Article  Google Scholar 

Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dakic V, de Moraes MR, Drummond H, Nascimento JM, Trindade P, Rehen SK. Harmine stimulates proliferation of human neural progenitors. PeerJ. 2016;4: e2727.

Article  PubMed  PubMed Central  Google Scholar 

Suzuki M, Nelson AD, Eickstaedt JB, Wallace K, Wright LS, Svendsen CN. Glutamate enhances proliferation and neurogenesis in human neural progenitor cell cultures derived from the fetal cortex. Eur J Neurosci. 2006;24(3):645–53.

Article  PubMed  Google Scholar 

Wegner F, Kraft R, Busse K, Schaarschmidt G, Härtig W, Schwarz SC, et al. Glutamate receptor properties of human mesencephalic neural progenitor cells: NMDA enhances dopaminergic neurogenesis in vitro. J Neurochem. 2009;111(1):204–16.

Article  CAS  PubMed  Google Scholar 

Wang Z, Li P, Wu T, Zhu S, Deng L, Cui G. Axon guidance pathway genes are associated with schizophrenia risk. Exp Ther Med. 2018; 16: 4519-4526.

Quadrato G, Brown J, Arlotta P. The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat Med. 2016, 22, 1220–1228.

Paşca SP. The rise of three-dimensional human brain cultures. Nature. 2018;553(7689):437–45.

Article  PubMed  Google Scholar 

Fatemi SH, Folsom TD. The neurodevelopmental hypothesis of schizophrenia. Revisited Schizophrenia Bull. 2009;35(3):528–48.

Article  Google Scholar 

Owen MJ, O’Donovan MC, Thapar A, Craddock N. Neurodevelopmental hypothesis of schizophrenia. Br J Psychiatry. 2011;198(3):173–5.

Article  PubMed  PubMed Central  Google Scholar 

Abdolmaleky HM, Smith CL, Faraone SV, Shafa R, Stone W, Glatt SJ, et al. Methylomics in psychiatry: modulation of gene-environment interactions may be through DNA methylation. Am J Med Genet B Neuropsychiatr Genet. 2004;127B(1):51–9.

Article  PubMed  Google Scholar 

Ellman LM, Deicken RF, Vinogradov S, Kremen WS, Poole JH, Kern DM, et al. Structural brain alterations in schizophrenia following fetal exposure to the inflammatory cytokine interleukin-8. Schizophr Res; 2010;121(1–3):46–54.

Cheslack-Postava K, Brown AS. Prenatal infection and schizophrenia: A decade of further progress. Schizophrenia Res; 2022; 247:7–15.

Singh SM, Murphy B, O’Reilly RL. Involvement of gene-diet/drug interaction in DNA methylation and its contribution to complex diseases: from cancer to schizophrenia. Clin Genet. 2003;64(6):451–60.

Article  CAS  PubMed  Google Scholar 

Sørensen HJ, Mortensen EL, Schiffman J, Reinisch JM, Maeda J, Mednick SA. Early developmental milestones and risk of schizophrenia: a 45-year follow-up of the Copenhagen Perinatal Cohort. Schizophr Res. 2010;118(1–3):41–7.

Article  PubMed  PubMed Central  Google Scholar 

St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, et al. Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA. 2005;294(5):557–62.

Article  CAS  PubMed  Google Scholar 

Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167(3):261–80.

Article  PubMed  PubMed Central  Google Scholar 

Henkemeyer M, Itkis OS, Ngo M, Hickmott PW, Ethell IM. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J Cell Biol. 2003;163(6):1313–26.

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif