The Role of Retinal Dysfunction in Myopia Development

Aleman AC, Wang M, Schaeffel F (2018) Reading and myopia: contrast polarity matters. Sci Rep 8(1):10840. https://doi.org/10.1038/s41598-018-28904-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Anera RG, Soler M, de la Cruz CJ, Salas C, Ortiz C (2009) Prevalence of refractive errors in school-age children in Morocco. Clin Exp Ophthalmol 37(2):191–196. https://doi.org/10.1111/j.1442-9071.2009.02001.x

Article  PubMed  Google Scholar 

Arno G, Hull S, Robson AG, Holder GE, Cheetham ME, Webster AR, Plagnol V, Moore AT (2015) Lack of interphotoreceptor retinoid binding protein caused by homozygous mutation of RBP3 is associated with high myopia and retinal dystrophy. Invest Ophthalmol vis Sci 56(4):2358–2365. https://doi.org/10.1167/iovs.15-16520

Article  CAS  PubMed  Google Scholar 

Ashby RS, Schaeffel F (2010) The effect of bright light on lens compensation in chicks. Invest Ophthalmol vis Sci 51(10):5247–5253. https://doi.org/10.1167/iovs.09-4689

Article  PubMed  Google Scholar 

Ashby R, McCarthy CS, Maleszka R, Megaw P, Morgan IG (2007) A muscarinic cholinergic antagonist and a dopamine agonist rapidly increase ZENK mRNA expression in the form-deprived chicken retina. Exp Eye Res 85(1):15–22. https://doi.org/10.1016/j.exer.2007.02.019

Article  CAS  PubMed  Google Scholar 

Ashby R, Kozulin P, Megaw PL, Morgan IG (2010) Alterations in ZENK and glucagon RNA transcript expression during increased ocular growth in chickens. Mol vis 16:639–649

CAS  PubMed  PubMed Central  Google Scholar 

Ashby RS, Zeng G, Leotta AJ, Tse DY, McFadden SA (2014) Egr-1 mRNA expression is a marker for the direction of mammalian ocular growth. Invest Ophthalmol vis Sci 55(9):5911–5921. https://doi.org/10.1167/iovs.13-11708

Article  CAS  PubMed  Google Scholar 

Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH (2017) Proteomics: technologies and their applications. J Chromatogr Sci 55(2):182–196. https://doi.org/10.1093/chromsci/bmw167

Article  CAS  PubMed  Google Scholar 

Atkinson CL, Feng J, Zhang DQ (2013) Functional integrity and modification of retinal dopaminergic neurons in the rd1 mutant mouse: roles of melanopsin and GABA. J Neurophysiol 109(6):1589–1599. https://doi.org/10.1152/jn.00786.2012

Article  CAS  PubMed  Google Scholar 

Baba H, Kohno T, Okamoto M, Goldstein PA, Shimoji K, Yoshimura M (1998) Muscarinic facilitation of GABA release in substantia gelatinosa of the rat spinal dorsal horn. J Physiol 508:83–93. https://doi.org/10.1111/j.1469-7793.1998.083br.x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baba K, DeBruyne JP, Tosini G (2017) Dopamine 2 receptor activation entrains circadian clocks in mouse retinal pigment epithelium. Sci Rep 7(1):5103. https://doi.org/10.1038/s41598-017-05394-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baba K, Goyal V, Tosini G (2022) Circadian regulation of retinal pigment epithelium function. Int J Mol Sci. https://doi.org/10.3390/ijms23052699

Article  PubMed  PubMed Central  Google Scholar 

Banerjee S, Wang Q, Zhao F, Tang G, So C, Tse D, To CH, Feng Y, Zhou X, Pan F (2020) Increased connexin36 phosphorylation in aii amacrine cell coupling of the mouse myopic retina. Front Cell Neurosci 14:124. https://doi.org/10.3389/fncel.2020.00124

Article  CAS  PubMed  PubMed Central  Google Scholar 

Banerjee S, Wang Q, Tang G, So C, Shan SW, Li KK, Do CW, Pan F (2021) Functional connexin35 increased in the myopic chicken retina. Vis Neurosci. https://doi.org/10.1017/s0952523821000079

Article  PubMed  PubMed Central  Google Scholar 

Bao XY, Cao J (2019) MiRNA-138–5p protects the early diabetic retinopathy by regulating NOVA1. Eur Rev Med Pharmacol Sci 23(18):7749–7756

PubMed  Google Scholar 

Barathi VA, Chaurasia SS, Poidinger M, Koh SK, Tian D, Ho C, Iuvone PM, Beuerman RW, Zhou L (2014) Involvement of GABA transporters in atropine-treated myopic retina as revealed by iTRAQ quantitative proteomics. J Proteome Res 13(11):4647–4658. https://doi.org/10.1021/pr500558y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berber P, Grassmann F, Kiel C, Weber BH (2017) An eye on age-related macular degeneration: the role of MicroRNAs in disease pathology. Mol Diagn Ther 21(1):31–43. https://doi.org/10.1007/s40291-016-0234-z

Article  CAS  PubMed  Google Scholar 

Bertrand E, Fritsch C, Diether S, Lambrou G, Müller D, Schaeffel F, Schindler P, Schmid KL, van Oostrum J, Voshol H (2006) Identification of apolipoprotein A-I as a “STOP” signal for myopia. Mol Cell Proteomics 5(11):2158–2166. https://doi.org/10.1074/mcp.M600073-MCP200

Article  CAS  PubMed  Google Scholar 

Bitzer M, Schaeffel F (2002) Defocus-induced changes in ZENK expression in the chicken retina. Invest Ophthalmol vis Sci 43(1):246–252

PubMed  Google Scholar 

Boatright JH, Rubim NM, Iuvone PM (1994) Regulation of endogenous dopamine release in amphibian retina by gamma-aminobutyric acid and glycine. Vis Neurosci 11(5):1003–1012. https://doi.org/10.1017/s095252380000393x

Article  CAS  PubMed  Google Scholar 

Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT (2022) Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res 219:109071. https://doi.org/10.1016/j.exer.2022.109071

Article  CAS  PubMed  Google Scholar 

Bueno JM, Palacios R, Giakoumaki A, Gualda EJ, Schaeffel F, Artal P (2014) Retinal cell imaging in myopic chickens using adaptive optics multiphoton microscopy. Biomed Opt Express 5(3):664–674. https://doi.org/10.1364/boe.5.000664

Article  PubMed  PubMed Central  Google Scholar 

Cai YL, Zou YC, Lei JH, Zeng GP, Wang Y (2016) The investigation on the role of mitochondrial fusion protein 1 in the development of myopia. Indian J Ophthalmol 64(7):500–503. https://doi.org/10.4103/0301-4738.190137

Article  PubMed  PubMed Central  Google Scholar 

Cakmak AI, Basmak H, Gursoy H, Ozkurt M, Yildirim N, Erkasap N, Bilgec MD, Tuncel N, Colak E (2017) Vasoactive intestinal peptide, a promising agent for myopia? Int J Ophthalmol 10(2):211–216

PubMed  PubMed Central  Google Scholar 

Casson RJ, Kahawita S, Kong A, Muecke J, Sisaleumsak S, Visonnavong V (2012) Exceptionally low prevalence of refractive error and visual impairment in schoolchildren from Lao People’s Democratic Republic. Ophthalmology 119(10):2021–2027. https://doi.org/10.1016/j.ophtha.2012.03.049

Article  PubMed  Google Scholar 

Chakraborty R, Pardue MT (2015) Molecular and biochemical aspects of the retina on refraction. Prog Mol Biol Transl Sci 134:249–267. https://doi.org/10.1016/bs.pmbts.2015.06.013

Article  PubMed  PubMed Central  Google Scholar 

Chakraborty R, Park H, Aung MH, Tan CC, Sidhu CS, Iuvone PM, Pardue MT (2014) Comparison of refractive development and retinal dopamine in OFF pathway mutant and C57BL/6J wild-type mice. Mol vis 20:1318–1327

PubMed  PubMed Central  Google Scholar 

Chakraborty R, Ostrin LA, Nickla DL, Iuvone PM, Pardue MT, Stone RA (2018) Circadian rhythms, refractive development, and myopia. Ophthalmic Physiol Opt 38(3):217–245. https://doi.org/10.1111/opo.12453

Article  PubMed  PubMed Central  Google Scholar 

Chakraborty R, Yang V, Park HN, Landis EG, Dhakal S, Motz CT, Bergen MA, Iuvone PM, Pardue MT (2019) Lack of cone mediated retinal function increases susceptibility to form-deprivation myopia in mice. Exp Eye Res 180:226–230. https://doi.org/10.1016/j.exer.2018.12.021

Article  CAS  PubMed  Google Scholar 

Chakraborty R, Landis EG, Mazade R, Yang V, Strickland R, Hattar S, Stone RA, Iuvone PM, Pardue MT (2022) Melanopsin modulates refractive development and myopia. Exp Eye Res 214:108866. https://doi.org/10.1016/j.exer.2021.108866

Article  CAS  PubMed  Google Scholar 

Chang TC, Mendell JT (2007) microRNAs in vertebrate physiology and human disease. Annu Rev Genomics Hum Genet 8:215–239. https://doi.org/10.1146/annurev.genom.8.080706.092351

Article  CAS  PubMed  Google Scholar 

Chebib M, Hinton T, Schmid KL, Brinkworth D, Qian H, Matos S, Kim HL, Abdel-Halim H, Kumar RJ, Johnston GA, Hanrahan JR (2009) Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory. J Pharmacol Exp Ther 328(2):448–457. https://doi.org/10.1124/jpet.108.146464

Article  CAS  PubMed  Google Scholar 

Chen KC, Hsi E, Hu CY, Chou WW, Liang CL, Juo SH (2012) MicroRNA-328 may influence myopia development by mediating the PAX6 gene. Invest Ophthalmol vis Sci 53(6):2732–2739. https://doi.org/10.1167/iovs.11-9272

Article  CAS  PubMed  Google Scholar 

Chen S, Zhi Z, Ruan Q, Liu Q, Li F, Wan F, Reinach PS, Chen J, Qu J, Zhou X (2017) Bright light suppresses form-deprivation myopia development with activation of dopamine D1 receptor signaling in the ON pathway in retina. Invest Ophthalmol vis Sci 58(4):2306–2316. https://doi.org/10.1167/iovs.16-20402

Article  CAS  PubMed  Google Scholar 

Chen P, Xu L, Zhang J, Cai X, Yang Y, Yu J, Qiu J, Ge J, Yu K, Zhuang J (2020) Up-regulation of SorCS1, an important sorting receptor, in the retina of a form-deprivation rat model. Cell Mol Neurobiol 40(3):395–405. https://doi.org/10.1007/s10571-019-00740-1

Article  CAS  PubMed 

留言 (0)

沒有登入
gif