FoxG1 as a Potential Therapeutic Target for Alzheimer’s Disease: Modulating NLRP3 Inflammasome via AMPK/mTOR Autophagy Pathway

Abad-Jiménez Z, López-Domènech S, García-Gargallo C, Vezza T, Gómez-Abril SÁ, Morillas C, Díaz-Pozo P, Falcón R, Bañuls C, Víctor VM, Rocha M (2022) Roux-en-Y gastric bypass modulates AMPK, autophagy and inflammatory response in leukocytes of obese patients. Biomedicines. https://doi.org/10.3390/biomedicines10020430

Article  PubMed  PubMed Central  Google Scholar 

Abedin F, Kandel N, Tatulian SA (2021) Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Sci Rep 11(1):19262. https://doi.org/10.1038/s41598-021-98644-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adesina AM, Veo BL, Courteau G, Mehta V, Wu X, Pang K, Liu Z, Li X-N, Peters L (2015) FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol 46(12):1859–1871. https://doi.org/10.1016/j.humpath.2015.08.003

Article  CAS  PubMed  Google Scholar 

Ahmed ME, Iyer S, Thangavel R, Kempuraj D, Selvakumar GP, Raikwar SP, Zaheer S, Zaheer A (2017) Co-localization of glia maturation factor with NLRP3 inflammasome and autophagosome markers in human Alzheimer’s disease brain. J Alzheimers Dis 60(3):1143–1160. https://doi.org/10.3233/JAD-170634

Article  CAS  PubMed  PubMed Central  Google Scholar 

Aizawa S, Hoki M, Yamamuro Y (2017) Lactoferrin promotes autophagy via AMP-activated protein kinase activation through low-density lipoprotein receptor-related protein 1. Biochem Biophys Res Commun 493(1):509–513. https://doi.org/10.1016/j.bbrc.2017.08.160

Article  CAS  PubMed  Google Scholar 

Assaf L, Eid AA, Nassif J (2022) Role of AMPK/mTOR, mitochondria, and ROS in the pathogenesis of endometriosis. Life Sci 306:120805. https://doi.org/10.1016/j.lfs.2022.120805

Article  CAS  PubMed  Google Scholar 

Babić Leko M, Nikolac Perković M, Klepac N, Štrac DŠ, Borovečki F, Pivac N, Hof PR, Šimić G (2020) IL-1β, IL-6, IL-10, and TNFα single nucleotide polymorphisms in human influence the susceptibility to Alzheimer’s disease pathology. J Alzheimers Dis 75(3):1029–1047. https://doi.org/10.3233/JAD-200056

Article  CAS  PubMed  Google Scholar 

Behl T, Kaur D, Sehgal A, Singh S, Makeen HA, Albratty M, Abdellatif AAH, Dachani SR, Bungau S (2022) Exploring the potential role of rab5 protein in endo-lysosomal impairment in Alzheimer’s disease. Biomed Pharmacother 148:112773. https://doi.org/10.1016/j.biopha.2022.112773

Article  CAS  PubMed  Google Scholar 

Boada C, Zinger A, Tsao C, Zhao P, Martinez JO, Hartman K, Naoi T, Sukhoveshin R, Sushnitha M, Molinaro R, Trachtenberg B, Cooke JP, Tasciotti E (2020) Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation. Circ Res 126(1):25–37. https://doi.org/10.1161/CIRCRESAHA.119.315185

Article  CAS  PubMed  Google Scholar 

Chun Y, Kim J (2021) AMPK-mTOR signaling and cellular adaptations in hypoxia. Int J Mol Sci. https://doi.org/10.3390/ijms22189765

Article  PubMed  PubMed Central  Google Scholar 

Dai S, Zhou F, Sun J, Li Y (2021) NPD1 enhances autophagy and reduces hyperphosphorylated tau and amyloid-β42 by inhibiting GSK3β activation in N2a/APP695swe cells. J Alzheimers Dis 84(2):869–881

Article  CAS  PubMed  Google Scholar 

Fasano CA, Phoenix TN, Kokovay E, Lowry N, Elkabetz Y, Dimos JT, Lemischka IR, Studer L, Temple S (2009) Bmi-1 cooperates with Foxg1 to maintain neural stem cell self-renewal in the forebrain. Genes Dev 23(5):561–574. https://doi.org/10.1101/gad.1743709

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng Y-S, Tan Z-X, Wu L-Y, Dong F, Zhang F (2020) The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res Rev 64:101192. https://doi.org/10.1016/j.arr.2020.101192

Article  CAS  PubMed  Google Scholar 

Freitag K, Sterczyk N, Wendlinger S, Obermayer B, Schulz J, Farztdinov V, Mülleder M, Ralser M, Houtman J, Fleck L, Braeuning C, Sansevrino R, Hoffmann C, Milovanovic D, Sigrist SJ, Conrad T, Beule D, Heppner FL, Jendrach M (2022) Spermidine reduces neuroinflammation and soluble amyloid beta in an Alzheimer’s disease mouse model. J Neuroinflammation 19(1):172. https://doi.org/10.1186/s12974-022-02534-7

Article  CAS  PubMed  PubMed Central  Google Scholar 

Friedland RP, Chapman MR (2017) The role of microbial amyloid in neurodegeneration. PLoS Pathog 13(12):e1006654. https://doi.org/10.1371/journal.ppat.1006654

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao J, Chen X, Ma T, He B, Li P, Zhao Y, Ma Y, Zhuang J, Yin Y (2020) PEG-ceramide nanomicelles induce autophagy and degrade tau proteins in N2a cells. Int J Nanomedicine 15:6779–6789

Article  CAS  PubMed  PubMed Central  Google Scholar 

Guerrini R, Parrini E (2012) Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies. Epilepsia 53(12):2067–2078. https://doi.org/10.1111/j.1528-1167.2012.03656.x

Article  CAS  PubMed  Google Scholar 

He Z, Fang Q, Li H, Shao B, Zhang Y, Zhang Y, Han X, Guo R, Cheng C, Guo L, Shi L, Li A, Yu C, Kong W, Zhao C, Gao X, Chai R (2019) The role of FOXG1 in the postnatal development and survival of mouse cochlear hair cells. Neuropharmacology 144:43–57. https://doi.org/10.1016/j.neuropharm.2018.10.021

Article  CAS  PubMed  Google Scholar 

He Z-H, Li M, Fang Q-J, Liao F-L, Zou S-Y, Wu X, Sun H-Y, Zhao X-Y, Hu Y-J, Xu X-X, Chen S, Sun Y, Chai R-J, Kong W-J (2021) FOXG1 promotes aging inner ear hair cell survival through activation of the autophagy pathway. Autophagy 17(12):4341–4362. https://doi.org/10.1080/15548627.2021.1916194

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hettige NC, Peng H, Wu H, Zhang X, Yerko V, Zhang Y, Jefri M, Soubannier V, Maussion G, Alsuwaidi S, Ni A, Rocha C, Krishnan J, McCarty V, Antonyan L, Schuppert A, Turecki G, Fon EA, Durcan TM, Ernst C (2022) FOXG1 dose tunes cell proliferation dynamics in human forebrain progenitor cells. Stem Cell Rep 17(3):475–488. https://doi.org/10.1016/j.stemcr.2022.01.010

Article  CAS  Google Scholar 

Hol EM, Pekny M (2015) Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol 32:121–130. https://doi.org/10.1016/j.ceb.2015.02.004

Article  CAS  PubMed  Google Scholar 

Hong Y, Liu Y, Yu D, Wang M, Hou Y (2019) The neuroprotection of progesterone against Aβ-induced NLRP3-Caspase-1 inflammasome activation via enhancing autophagy in astrocytes. Int Immunopharmacol 74:105669. https://doi.org/10.1016/j.intimp.2019.05.054

Article  CAS  PubMed  Google Scholar 

Hradek AC, Lee H-P, Siedlak SL, Torres SL, Jung W, Han AH, Lee H-g (2015) Distinct chronology of neuronal cell cycle re-entry and tau pathology in the 3xTg-AD mouse model and Alzheimer’s disease patients. J Alzheimers Dis 43(1):57–65. https://doi.org/10.3233/JAD-141083

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imai Y, Koseki Y, Hirano M, Nakamura S (2021) Nutrigenomic studies on the ameliorative effect of enzyme-digested phycocyanin in Alzheimer’s disease model mice. Nutrients. https://doi.org/10.3390/nu13124431

Article  PubMed  PubMed Central  Google Scholar 

Ito M, Yurube T, Kanda Y, Kakiuchi Y, Takeoka Y, Takada T, Kuroda R, Kakutani K (2021) Inhibition of autophagy at different stages by ATG5 knockdown and chloroquine supplementation enhances consistent human disc cellular apoptosis and senescence induction rather than extracellular matrix catabolism. Int J Mol Sci. https://doi.org/10.3390/ijms22083965

Article  PubMed  PubMed Central  Google Scholar 

Jacobs KA, André-Grégoire G, Maghe C, Thys A, Li Y, Harford-Wright E, Trillet K, Douanne T, Alves Nicolau C, Frénel J-S, Bidère N, Gavard J (2020) Paracaspase MALT1 regulates glioma cell survival by controlling endo-lysosome homeostasis. EMBO J 39(1):e102030. https://doi.org/10.15252/embj.2019102030

Article  CAS  PubMed  Google Scholar 

Kim KH, Lee M-S (2014) Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol 10(6):322–337. https://doi.org/10.1038/nrendo.2014.35

Article  CAS  PubMed  Google Scholar 

Korbut AI, Taskaeva IS, Bgatova NP, Muraleva NA, Orlov NB, Dashkin MV, Khotskina AS, Zavyalov EL, Konenkov VI, Klein T, Klimontov VV (2020) SGLT2 inhibitor empagliflozin and DPP4 inhibitor linagliptin reactivate glomerular autophagy in db/db mice, a model of type 2 diabetes. Int J Mol Sci. https://doi.org/10.3390/ijms21082987

Article  PubMed  PubMed Central  Google Scholar 

Larabi A, Barnich N, Nguyen HTT (2020) New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 16(1):38–51. https://doi.org/10.1080/15548627.2019.1635384

Article  CAS  PubMed  Google Scholar 

Li M-Y, Zhu X-L, Zhao B-X, Shi L, Wang W, Hu W, Qin S-L, Chen B-H, Zhou P-H, Qiu B, Gao Y, Liu B-L (2019) Adrenomedullin alleviates the pyroptosis of Leydig cells by promoting autophagy via the ROS-AMPK-mTOR axis. Cell Death Dis 10(7):489. https://doi.org/10.1038/s41419-019-1728-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Li K, Chu F, Huang J, Yang Z (2020) Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neu

留言 (0)

沒有登入
gif