The Progress in Molecular Transport and Therapeutic Development in Human Blood–Brain Barrier Models in Neurological Disorders

Aazmi A et al (2022) Vascularizing the brain in vitro. Science. https://doi.org/10.1016/j.isci.2022.104110

Article  Google Scholar 

Al Ahmad A, Gassmann M, Ogunshola OO (2009) Maintaining blood–brain barrier integrity: pericytes perform better than astrocytes during prolonged oxygen deprivation. J Cell Physiol. https://doi.org/10.1002/jcp.21638

Article  PubMed  Google Scholar 

Al Ahmad A, Gassmann M, Ogunshola OO (2012) Involvement of oxidative stress in hypoxia-induced blood–brain barrier breakdown. Microvasc Res. https://doi.org/10.1016/j.mvr.2012.05.008

Article  PubMed  Google Scholar 

Armulik A et al (2010) Pericytes regulate the blood–brain barrier. Nature. https://doi.org/10.1038/nature09522

Article  PubMed  Google Scholar 

Bagchi S et al (2019) In-vitro blood–brain barrier models for drug screening and permeation studies: an overview. Drug Des Dev Ther. https://doi.org/10.2147/DDDT.S218708

Article  Google Scholar 

Balbuena P et al (2010) Comparison of two blood–brain barrier in vitro systems: cytotoxicity and transfer assessments of malathion/oxon and lead acetate. Toxicol Sci. https://doi.org/10.1093/toxsci/kfq001

Article  PubMed  Google Scholar 

Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2003.12.016

Article  PubMed  Google Scholar 

Bell RD et al (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. https://doi.org/10.1016/j.neuron.2010.09.043

Article  PubMed  PubMed Central  Google Scholar 

Berg J et al (2018) Optimization of cell-laden bioinks for 3D bioprinting and efficient infection with influenza A virus. Sci Rep. https://doi.org/10.1038/s41598-018-31880-x

Article  PubMed  PubMed Central  Google Scholar 

Bergmann S et al (2018) Blood–brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat Protoc. https://doi.org/10.1038/s41596-018-0066-x

Article  PubMed  PubMed Central  Google Scholar 

Bernardo-Castro S et al (2020) Pathophysiology of blood–brain barrier permeability throughout the different stages of ischemic stroke and its implication on hemorrhagic transformation and recovery. Front Neurol 11(December):1–24. https://doi.org/10.3389/fneur.2020.594672

Article  Google Scholar 

Bhalerao A et al (2020) In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS. https://doi.org/10.1186/s12987-020-00183-7

Article  PubMed  PubMed Central  Google Scholar 

Branca JJV et al (2022) The protection of zinc against acute cadmium exposure: a morphological and molecular study on a BBB in vitro model. Cells. https://doi.org/10.3390/cells11101646

Article  PubMed  PubMed Central  Google Scholar 

Branca JJV et al (2023) Morphological and functional effects of ultrasound on blood–brain barrier transitory opening: an in vitro study on rat brain endothelial cells. Cells 12(1):1–14. https://doi.org/10.3390/cells12010192

Article  CAS  Google Scholar 

Brown RC, Davis TP (2005) Hypoxia/aglycemia alters expression of occludin and actin in brain endothelial cells. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2004.12.123

Article  PubMed  Google Scholar 

Burgess A, Hynynen K (2016) Microbubble-assisted ultrasound for drug delivery in the brain and central nervous system. Adv Exp Med Biol. https://doi.org/10.1007/978-3-319-22536-4_16

Article  PubMed  Google Scholar 

Buzhdygan TP et al (2020) The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in-vitro models of the human blood–brain barrier. Neurobiol Dis. https://doi.org/10.1016/j.nbd.2020.105131

Article  PubMed  PubMed Central  Google Scholar 

Cakir B et al (2019) Engineering of human brain organoids with a functional vascular-like system. Nat Methods. https://doi.org/10.1038/s41592-019-0586-5

Article  PubMed  PubMed Central  Google Scholar 

Campisi M et al (2018) 3D self-organized microvascular model of the human blood–brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials. https://doi.org/10.1016/j.biomaterials.2018.07.014

Article  PubMed  PubMed Central  Google Scholar 

Cardoso FL, Brites D, Brito MA (2010) Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. Brain Res Rev. https://doi.org/10.1016/j.brainresrev.2010.05.003

Article  PubMed  Google Scholar 

Chen ZL, Strickland S (1997) Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell. https://doi.org/10.1016/S0092-8674(00)80483-3

Article  PubMed  Google Scholar 

Chen KT et al (2021) Neuronavigation-guided focused ultrasound for transcranial blood–brain barrier opening and immunostimulation in brain tumors. Sci Adv. https://doi.org/10.1126/sciadv.abd0772

Article  PubMed  PubMed Central  Google Scholar 

Chen S et al (2022) A review of bioeffects induced by focused ultrasound combined with microbubbles on the neurovascular unit. J Cereb Blood Flow Metab 42(1):3–26. https://doi.org/10.1177/0271678X211046129

Article  CAS  PubMed  Google Scholar 

Cho C et al (2017) Blood–brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents. Nat Commun 8:1–14. https://doi.org/10.1038/ncomms15623

Article  CAS  Google Scholar 

Christophe B et al (2020) Statin therapy in ischemic stroke models: a meta-analysis. Transl Stroke Res. https://doi.org/10.1007/s12975-019-00750-7

Article  PubMed  Google Scholar 

Chung TD et al (2022) Effects of acute and chronic oxidative stress on the blood–brain barrier in 2D and 3D in vitro models. Fluids Barriers CNS. https://doi.org/10.1186/s12987-022-00327-x

Article  PubMed  PubMed Central  Google Scholar 

Deng D et al (2014) Crystal structure of the human glucose transporter GLUT1. Nature. https://doi.org/10.1038/nature13306

Article  PubMed  PubMed Central  Google Scholar 

Dong X (2018) Current strategies for brain drug delivery. Theranostics. https://doi.org/10.7150/thno.21254

Article  PubMed  PubMed Central  Google Scholar 

Dunton AD et al (2021) Form and function of the vertebrate and invertebrate blood–brain barriers. Int J Mol Sci. https://doi.org/10.3390/ijms222212111

Article  PubMed  PubMed Central  Google Scholar 

Eilenberger C et al (2021) A microfluidic multisize spheroid array for multiparametric screening of anticancer drugs and blood–brain barrier transport properties. Adv Sci. https://doi.org/10.1002/advs.202004856

Article  Google Scholar 

Engelhardt S et al (2014) Hypoxia selectively disrupts brain microvascular endothelial tight junction complexes through a hypoxia-inducible factor-1 (HIF-1) dependent mechanism. J Cell Physiol. https://doi.org/10.1002/jcp.24544

Article  PubMed  Google Scholar 

Engelhardt S et al (2015) Differential responses of blood-brain barrier associated cells to hypoxia and ischemia: a comparative study. Fluids Barriers CNS. https://doi.org/10.1186/2045-8118-12-4

Article  PubMed  PubMed Central  Google Scholar 

Erickson MA, Banks WA (2019) Age-associated changes in the immune system and blood–brain barrier functions. Int J Mol Sci. https://doi.org/10.3390/ijms20071632

Article  PubMed  PubMed Central  Google Scholar 

Ferrero ME (2022) Neuron protection by EDTA may explain the successful outcomes of toxic metal chelation therapy in neurodegenerative diseases. Biomedicines. https://doi.org/10.3390/biomedicines10102476

Article  PubMed  PubMed Central  Google Scholar 

Fischer S et al (2002) Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res. https://doi.org/10.1006/mvre.2001.2367

Article  PubMed  Google Scholar 

Fu BM, Zhao Z, Zhu D (2021) Blood–brain barrier (BBB) permeability and transport measurement in vitro and in vivo. Methods Mol Biol. https://doi.org/10.1007/7651_2020_308

Article  PubMed  PubMed Central  Google Scholar 

Garrido-Urbani S, Bradfield PF, Imhof BA (2014) Tight junction dynamics: the role of junctional adhesion molecules (JAMs). Cell Tissue Res. https://doi.org/10.1007/s00441-014-1820-1

Article  PubMed  Google Scholar 

Guzman-Cottrill J, Nadel S, Goldstein B (2008) The Systemic Inflammatory Response Syndrome (SIRS), sepsis, and septic shock. Princ Pract Pediatr Infect Dis. https://doi.org/10.1016/B978-0-7020-3468-8.50018-3

Article  Google Scholar 

Hajal C et al (2022) Engineered human blood–brain barrier microfluidic model for vascular permeability analyses. Nat Protoc. https://doi.org/10.1038/s41596-021-00635-w

留言 (0)

沒有登入
gif