Applications of carbon dots and its modified carbon dots in bone defect repair

Liao JF, Shi K, Jia YP, Wu YT, Qian ZY. Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion. Bioactive Mat. 2021;6(8):2221–30.

Google Scholar 

Qiu PC, Li MB, Chen K, Fang B, Chen PF, Tang ZB, et al. Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis. Biomaterials. 2020;227.

Liu XL, Yang YL, Li Y, Niu X, Zhao BZ, Wang Y, et al. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration. Nanoscale. 2017;9(13):4430–8.

Google Scholar 

Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials. 2011;32(1):65–74.

Google Scholar 

Lyu S, Huang CL, Yang H, Zhang XP. Electrospun fibers as a scaffolding platform for bone tissue repair. J Orthop Res. 2013;31(9):1382–9.

Google Scholar 

Cui LG, Zhang N, Cui WW, Zhang PB, Chen XS. A Novel Nano/Micro-Fibrous Scaffold by Melt-Spinning Method for Bone Tissue Engineering. J Bionic Eng. 2015;12(1):117–28.

Google Scholar 

Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, et al. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res. 2019;18:185–201.

Google Scholar 

Arambula-Maldonado R, Mequanint K. Carbon-based electrically conductive materials for bone repair and regeneration. Mat Adv. 2022;3(13):5186–206.

Google Scholar 

Islam M, Lantada AD, Mager D, Korvink JG. Carbon-based materials for articular tissue engineering: From innovative scaffolding materials toward engineered living carbon. Adv Healthc Mater. 2022;11(1):e2101834.

Google Scholar 

Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc. 2006;128(24):7756–7.

Google Scholar 

Georgakilas V, Perman JA, Tucek J, Zboril R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem Rev. 2015;115(11):4744–822.

Google Scholar 

Bhaisare ML, Sharma KH, Lee JY, Hang DR, Wu HF. Synthesis and characterization of two-dimensional carbon dots decorated with molybdenum oxide nanoflakes with various phases. New J Chem. 2016;40(10):8954–60.

Google Scholar 

Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small. 2015;11(14):1620–36.

Google Scholar 

Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 2014;9(5):590–603.

Google Scholar 

Liu ML, Chen BB, Li CM, Huang CZ. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019;21(3):449–71.

Google Scholar 

Zhang HC, Huang H, Ming H, Li HT, Zhang LL, Liu Y, et al. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J Mater Chem. 2012;22(21):10501–6.

Google Scholar 

Wang R, Lu KQ, Tang ZR, Xu YJ. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A. 2017;5(8):3717–34.

Google Scholar 

Yu HJ, Zhao YF, Zhou C, Shang L, Peng Y, Cao YH, et al. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J Mater Chem A. 2014;2(10):3344–51.

Google Scholar 

Messina MM, Barrionuevo SD, Coustet ME, Kreuzer MP, Saccone FD, Claro PCD, et al. Graphene and Carbon Dots for Photoanodes with Enhanced Performance. Acs App Nano Mat. 2021;4(7):7309–18.

Google Scholar 

Wang JY, Zhu YH, Wang L. Synthesis and Applications of Red-Emissive Carbon Dots. Chem Rec. 2019;19(10):2083–94.

Google Scholar 

Wang ZF, Yuan FL, Li XH, Li YC, Zhong HZ, Fan LZ, et al. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes. Adv Mater. 2017;29(37).

Dong YQ, Wang RX, Li GL, Chen CQ, Chi YW, Chen GN. Polyamine-Functionalized Carbon Quantum Dots as Fluorescent Probes for Selective and Sensitive Detection of Copper Ions. Anal Chem. 2012;84(14):6220–4.

Google Scholar 

Zhang RZ, Chen W. Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron. 2014;55:83–90.

Google Scholar 

Qu KG, Wang JS, Ren JS, Qu XG. Carbon Dots Prepared by Hydrothermal Treatment of Dopamine as an Effective Fluorescent Sensing Platform for the Label-Free Detection of Iron (III) Ions and Dopamine. Chem A Eur J. 2013;19(22):7243–9.

Google Scholar 

Zheng M, Xie ZG, Qu D, Li D, Du P, Jing XB, et al. On Off On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium (VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Appl Mater Interfaces. 2013;5(24):13242–7.

Google Scholar 

Liu W, Diao HP, Chang HH, Wang HJ, Li TT, Wei WL. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensors Actuators B Chem. 2017;241:190–8.

Google Scholar 

Hamd-Ghadareh S, Salimi A, Fathi F, Bahrami S. An amplified comparative fluorescence resonance energy transfer immunosensing of CA125 tumor marker and ovarian cancer cells using green and economic carbon dots for bio-applications in labeling, imaging and sensing. Biosens Bioelectron. 2017;96:308–16.

Google Scholar 

Du FY, Zhang LR, Zhang L, Zhang MM, Gong AH, Tan YW, et al. Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials. 2017;121:109–20.

Google Scholar 

Gu CX, Guo CP, Li ZZ, Wang MH, Zhou N, He LH, et al. Bimetallic ZrHf-based metal-organic framework embedded with carbon dots: Ultra-sensitive platform for early diagnosis of HER2 and HER2-overexpressed living cancer cells. Biosens Bioelectron. 2019;134:8–15.

Google Scholar 

Gowthaman NSK, Sinduja B, Karthikeyan R, Rubini K, John SA. Fabrication of nitrogen-doped carbon dots for screening the purine metabolic disorder in human fluids. Biosens Bioelectron. 2017;94:30–8.

Google Scholar 

Doblare M, Garcia JM, Gomez MJ. Modelling bone tissue fracture and healing: a review. Eng Fracture Mech. 2004;71(13-14):1809–40.

Google Scholar 

Martin AD, McCulloch RG. Bone dynamics: stress, strain and fracture. J Sports Sci. 1987;5(2):155–63.

Google Scholar 

Wang WH, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioactive Mat. 2017;2(4):224–47.

Google Scholar 

Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015;11(1):45–54.

Google Scholar 

DeLacure MD. Physiology of bone healing and bone grafts. Otolaryngol Clin North Am. 1994;27(5):859–74.

Google Scholar 

Panetta NJ, Gupta DM, Longaker MT. Bone Regeneration and Repair. Curr Stem Cell Res Ther. 2010;5(2):122–8.

Google Scholar 

Reichert JC, Saifzadeh S, Wullschleger ME, Epari DR, Schutz MA, Duda GN, et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials. 2009;30(12):2149–63.

Google Scholar 

Wildemann B, Kadow-Romacker A, Pruss A, Haas NP, Schmidmaier G. Quantification of growth factors in allogenic bone grafts extracted with three different methods. Cell Tissue Bank. 2007;8(2):107–14.

Google Scholar 

Choi B, Lee SH. Nano/Micro-Assisted Regenerative Medicine. Int J Mol Sci. 2018;19(8):2187.

Google Scholar 

Mendonca G, Mendonca DBS, Aragao FJL, Cooper LF. Advancing dental implant surface technology - From micron- to nanotopography. Biomaterials. 2008;29(28):3822–35.

Google Scholar 

Bighetti-Trevisan RL, Almeida LO, Castro-Raucci LMS, Gordon JAR, Tye CE, Stein GS, et al. Titanium with nanotopography attenuates the osteoclast-induced disruption of osteoblast differentiation by regulating histone methylation. Biomaterials. Advances. 2022:134.

Rosa AL, Kato RB, Raucci L, Teixeira LN, de Oliveira FS, Bellesini LS, et al. Nanotopography Drives Stem Cell Fate Toward Osteoblast Differentiation Through alpha 1 beta 1 Integrin Signaling Pathway. J Cell Biochem. 2014;115(3):540–8.

Google Scholar 

Liu Y, Luo D, Yu M, Wang Y, Jin SS, Li ZX, et al. Thermodynamically controlled self-assembly of hierarchically staggered aArchitecture as an osteoinductive alternative to bone autografts. Adv Funct Mater. 2019;29(10):1806445.

Google Scholar 

Sola A, Bellucci D, Cannillo V. Functionally graded materials for orthopedic applications - an update on design and manufacturing. Biotechnol Adv. 2016;34(5):504–31.

Google Scholar 

Stevens MM, George JH. Exploring and engineering the cell surface interface. Science. 2005;310(5751):1135–8.

Google Scholar 

Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell regulators. Nat Mater. 2014;13(6):547–57.

Google Scholar 

Dalby MJ, Gadegaard N, Tare R, Andar A, Riehle MO, Herzyk P, et al. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater. 2007;6(12):997–1003.

Google Scholar 

Liu Y, Liu SA, Luo D, Xue ZJ, Yang XA, Cu L, et al. Hierarchically Staggered Nanostructure of Mineralized Collagen as a Bone-Grafting Scaffold. Adv Mater. 2016;28(39):8740–8.

Google Scholar 

Li LM, Zuo Y, Zou Q, Yang BY, Lin LL, Li JD, et al. Hierarchical Structure and Mechanical Improvement of an n-HA/GCO-PU Composite Scaffold for Bone Regeneration. ACS Appl Mater Interfaces. 2015;7(40):22618–29.

Google Scholar 

Jin SS, He DQ, Luo D, Wang Y, Yu M, Guan B, et al. A Biomimetic Hierarchical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment To Promote Endogenous Bone Regeneration. ACS Nano. 2019;13(6):6581–95.

Google Scholar 

Hou S, Niu XF, Li LH, Zhou J, Qian ZY, Yao DY, et al. Simultaneous nano- and microscale structural control of injectable hydrogels via the assembly of nanofibrous protein microparticles for tissue regeneration. Biomaterials. 2019;223.

Huang GY, Li F, Zhao X, Ma YF, Li YH, Lin M, et al. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev. 2017;117(20):12764–850.

Google Scholar 

Gogoi S, Maji S, Mishra D, Devi KSP, Maiti TK, Karak N. Nano-bio engineered carbon dot-peptide functionalized water dispersible hyperbranched polyurethane for bone tissue regeneration. Macromol Biosci. 2017;17(3):1600271.

Google Scholar 

Gogoi S, Kumar M, Mandal BB, Karak N. A renewable resource based carbon dot decorated hydroxyapatite nanohybrid and its fabrication with waterborne hyperbranched polyurethane for bone tissue engineering. RSC Adv. 2016;6(31):26066–76.

Google Scholar 

Shao D, Lu MM, Xu D, Zheng X, Pan Y, Song YB, et al. Carbon dots for tracking and promoting the osteogenic differentiation of mesenchymal stem cells. Biomater Sci. 2017;5(9):1820–7.

Google Scholar 

Lu Y, Li LH, Li M, Lin ZF, Wang LP, Zhang Y, et al. Zero-Dimensional Carbon Dots Enhance Bone Regeneration, Osteosarcoma Ablation, and Clinical Bacterial Eradication. Bioconjug Chem. 2018;29(9):2982–93.

Google Scholar 

Lu ZH, Liu SJ, Le YG, Qin ZN, He MW, Xu FB, et al. An injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesis. Biomaterials. 2019;218.

Khajuria DK, Kumar VB, Gigi D, Gedanken A, Karasik D. Accelerated Bone Regeneration by Nitrogen-Doped Carbon Dots Functionalized with Hydroxyapatite Nanoparticles. ACS Appl Mater Interfaces. 2018;10(23):19373–85.

Google Scholar 

Bu WH, Xu XW, Wang ZL, Jin NQ, Liu LL, Liu J, et al. Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS Appl Mater Interfaces. 2020;12(45):50287–302.

Google Scholar 

Meng Y, Yang MX, Liu XC, Yu WX, Yang B. Zn2+-Doped carbon dots, a good biocompatibility nanomaterial applied for bio-imaging and inducing osteoblastic differentiation in vitro. Nano. 2019;14(3):58.

Google Scholar 

Wang B, Yang MX, Liu LJ, Yan GX, Yan HJ, Feng J, et al. Osteogenic potential of Zn2+-passivated carbon dots for bone regeneration in vivo. Biomater Sci. 2019;7(12):5414–23.

Google Scholar 

Liu JW, Jiang TM, Li C, Wu Y, He ML, Zhao JM, et al. Bioconjugated Carbon Dots for Delivery of siTnf alpha to Enhance Chondrogenesis of Mesenchymal Stem Cells by Suppression of Inflammation. Stem Cells Transl Med. 2019;8(7):724–36.

Google Scholar 

Das B, Girigoswami A, Dutta A, Pal P, Dutta J, Dadhich P, et al. Carbon Nanodots Doped Super-paramagnetic Iron Oxide Nanoparticles for Multimodal Bioimaging and Osteochondral Tissue Regeneration via External Magnetic Actuation. ACS Biomater Sci Eng. 2019;5(7):3549–60.

Google Scholar 

Jin NQ, Jin N, Wang ZL, Liu LL, Meng L, Li DW, et al. Osteopromotive carbon dots promote bone regeneration through the PERK-eIF2 alpha-ATF4 pathway. Biomater Sci. 2020;8(10):2840–52.

Google Scholar 

Ren CX, Hao XQ, Wang L, Hu Y, Meng L, Zheng SZ, et al. Metformin carbon dots for promoting periodontal bone regeneration via activation of ERK/AMPK pathway. Adv Healthc Mater. 2021;10(12):2100196.

Google Scholar 

Ghorghi M, Rafienia M, Nasirian V, Bitaraf FS, Gharravi AM, Zarrabi A. Electrospun captopril-loadedPCL-carbon quantum dots nanocomposite scaffold: Fabrication, characterization, and in vitro studies. Polymers Adv Technol. 2020;31(12):3302–15.

Google Scholar 

Shafiei S, Omidi M, Nasehi F, Golzar H, Mohammadrezaei D, Rad MR, et al. Egg shell-derived calcium phosphate/carbon dot nanofibrous scaffolds for bone tissue engineering: Fabrication and characterization. Mat Sci Eng C M

留言 (0)

沒有登入
gif