Mucosal immunization with a delta-inulin adjuvanted recombinant spike vaccine elicits lung-resident immune memory and protects mice against SARS-CoV-2

Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

Article  PubMed  CAS  Google Scholar 

Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2020).

Article  PubMed  Google Scholar 

Wouters, O. J. et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet 397, 1023–1034 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Sarkar, I., Garg, R. & van Drunen Littel-van den Hurk, S. Selection of adjuvants for vaccines targeting specific pathogens. Expert Rev. Vaccines 18, 505–521 (2019).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rossman, H. et al. COVID-19 dynamics after a national immunization program in Israel. Nat. Med. 27, 1055–1061 (2021).

Article  PubMed  CAS  Google Scholar 

Tartof, S. Y. et al. Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet 398, 1407–1416 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Pouwels, K. B. et al. Effect of Delta variant on viral burden and vaccine effectiveness against new SARS-CoV-2 infections in the UK. Nat. Med. 21, 2127–2135 (2021).

Article  Google Scholar 

Planas, D. et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature 602, 671–675 (2021).

Article  PubMed  Google Scholar 

Khoury, D. S. et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 27, 1205–1211 (2021).

Article  PubMed  CAS  Google Scholar 

Wang, P. et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593, 130–135 (2021).

Article  PubMed  CAS  Google Scholar 

Tarke, A. et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Rep. Med. 2, 100355 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Soresina, A. et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr. Allergy Immunol. 31, 565–569 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tan, A. T. et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. 34, 108728 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kim, S.-H. & Jang, Y.-S. The development of mucosal vaccines for both mucosal and systemic immune induction and the roles played by adjuvants. Clin. Exp. Vaccin. Res. 6, 15–21 (2017).

Article  CAS  Google Scholar 

Topol, E. J. & Iwasaki, A. Operation Nasal Vaccine—Lightning speed to counter COVID-19. Sci. Immunol. 0, eadd9947 (2022).

Article  CAS  Google Scholar 

Counoupas, C. et al. Mucosal delivery of a multistage subunit vaccine promotes development of lung-resident memory T cells and affords interleukin-17-dependent protection against pulmonary tuberculosis. NPJ Vaccines 5, 105–105 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ferrell, K. C. et al. Intrapulmonary vaccination with delta-inulin adjuvant stimulates non-polarised chemotactic signalling and diverse cellular interaction. Mucosal Immunol. 14, 762–773 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lewis, D. J. et al. Transient facial nerve paralysis (Bell’s palsy) following intranasal delivery of a genetically detoxified mutant of Escherichia coli heat labile toxin. PLoS One 4, e6999 (2009).

Article  PubMed  PubMed Central  Google Scholar 

Minne, A. et al. The delivery site of a monovalent influenza vaccine within the respiratory tract impacts on the immune response. Immunology 122, 316–325 (2007).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Todoroff, J. et al. Targeting the deep lungs, Poloxamer 407 and a CpG oligonucleotide optimize immune responses to Mycobacterium tuberculosis antigen 85A following pulmonary delivery. Eur. J. Pharm. Biopharm. 84, 40–48 (2013).

Article  PubMed  CAS  Google Scholar 

Jeyanathan, M. et al. Aerosol delivery, but not intramuscular injection, of adenovirus-vectored tuberculosis vaccine induces respiratory-mucosal immunity in humans. JCI Insight 7, e155655 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Cooper, P. D. & Petrovsky, N. Delta inulin: a novel, immunologically active, stable packing structure comprising β-D-[2 -> 1] poly(fructo-furanosyl) α-D-glucose polymers. Glycobiology 21, 595–606 (2011).

Article  PubMed  CAS  Google Scholar 

Kerekes, K. et al. Adjuvant effect of gamma-inulin is mediated by C3 fragments deposited on antigen-presenting cells. J. Leukoc. Biol. 69, 69–74 (2001).

Article  PubMed  CAS  Google Scholar 

Honda-Okubo, Y., Saade, F. & Petrovsky, N. Advax™, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses. Vaccine 30, 5373–5381 (2012).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Quan, D. H. et al. Advax adjuvant formulations promote protective immunity against aerosol Mycobacterium tuberculosis in the absence of deleterious inflammation and reactogenicity. Vaccine 39, 1990–1996 (2021).

Article  PubMed  CAS  Google Scholar 

Gordon, D. L. et al. Human Phase 1 trial of low-dose inactivated seasonal influenza vaccine formulated with Advax delta inulin adjuvant. Vaccine 34, 3780–3786 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Petrovsky, N. & Cooper, P. D. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine 33, 5920–5926 (2015).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li, L. et al. Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine 39, 5940–5953 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li, L. et al. Covax-19/Spikogen® vaccine based on recombinant spike protein extracellular domain with Advax-CpG55.2 adjuvant provides single dose protection against SARS-CoV-2 infection in hamsters. Vaccine 40, 3182–3192 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tabarsi, P. et al. Safety and immunogenicity of SpikoGen®, an Advax-CpG55.2-adjuvanted SARS-CoV-2 spike protein vaccine: a phase 2 randomized placebo-controlled trial in both seropositive and seronegative populations. Clin. Microbiol. Infect. 28, 1263–1271 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tabarsi, P. et al. Immunogenicity and safety of SpikoGen®, an adjuvanted recombinant SARS-CoV-2 spike protein vaccine as a homologous and heterologous booster vaccination: a randomized placebo-controlled trial. Immunology 167, 340–353 (2022).

Article  PubMed  CAS  Google Scholar 

Zhuang, Z. et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J. Exp. Med. 218, e20202187 (2021).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Masopust, D. & Soerens, A. G. Tissue-resident T cells and other resident leukocytes. Annu. Rev. Immunol. 37, 521–546 (2019).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhao, J. et al. Airway memory CD4+ T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 44, 1379–1391 (2016).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Flórido, M. et al. Pulmonary immunization with a recombinant influenza A virus vaccine induces lung-resident CD4+ memory T cells that are associated with protection against tuberculosis. Mucosal Immunol. 11, 1743–1752 (2018).

Article  PubMed  Google Scholar 

Aegerter, H. et al. Influenza-induced monocyte-derived alveolar macrophages confer p

留言 (0)

沒有登入
gif