Epithelial dysfunction is prevented by IL-22 treatment in a Citrobacter rodentium-induced colitis model that shares similarities with inflammatory bowel disease

de Souza, H. S. & Fiocchi, C. Immunopathogenesis of IBD: current state of the art. Nat. Rev. Gastroenterol. Hepatol. 13, 13–27 (2016).

PubMed  Google Scholar 

Caruso, R., Lo, B. C. & Nunez, G. Host-microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 20, 411–426 (2020).

PubMed  Google Scholar 

Uhlig, H. H. & Powrie, F. Translating Immunology into Therapeutic Concepts for Inflammatory Bowel Disease. Annu Rev. Immunol. 36, 755–781 (2018).

PubMed  Google Scholar 

Keir ME, Yi TS, Lu TT, Ghilardi N. The role of IL-22 in intestinal health and disease. J. Exp. Med. 217, e20192195 (2020).

Parikh, K. et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567, 49–55 (2019).

PubMed  Google Scholar 

Kiesler, P., Fuss, I. J. & Strober, W. Experimental Models of Inflammatory Bowel Diseases. Cell Mol. Gastroenterol. Hepatol. 1, 154–170 (2015).

PubMed  PubMed Central  Google Scholar 

Collins, J. W. et al. Citrobacter rodentium: infection, inflammation and the microbiota. Nat. Rev. Microbiol 12, 612–623 (2014).

PubMed  Google Scholar 

Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe .15, 382–392 (2014).

PubMed  PubMed Central  Google Scholar 

Borenshtein, D. et al. Decreased expression of colonic Slc26a3 and carbonic anhydrase iv as a cause of fatal infectious diarrhea in mice. Infect. Immun. 77, 3639–3650 (2009).

PubMed  PubMed Central  Google Scholar 

Borenshtein, D. et al. Diarrhea as a cause of mortality in a mouse model of infectious colitis. Genome Biol. 9, R122 (2008).

PubMed  PubMed Central  Google Scholar 

Papapietro, O. et al. R-spondin 2 signalling mediates susceptibility to fatal infectious diarrhoea. Nat. Commun. 4, 1898 (2013).

PubMed  Google Scholar 

Zha, J. M. et al. Interleukin 22 Expands Transit-Amplifying Cells While Depleting Lgr5(+) Stem Cells via Inhibition of Wnt and Notch Signaling. Cell Mol. Gastroenterol. Hepatol. 7, 255–274 (2019).

PubMed  Google Scholar 

Lindemans, C. A. et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature 528, 560–564 (2015).

PubMed  PubMed Central  Google Scholar 

Zenewicz, L. A. et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29, 947–957 (2008).

PubMed  PubMed Central  Google Scholar 

Tsai, P. Y. et al. IL-22 Upregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance. Cell Host Microbe. 21, 671–681 (2017). e674.

PubMed  PubMed Central  Google Scholar 

Pham, T. A. et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe. 16, 504–516 (2014).

PubMed  PubMed Central  Google Scholar 

Stefanich, E. G. et al. Pre-clinical and translational pharmacology of a human interleukin-22 IgG fusion protein for potential treatment of infectious or inflammatory diseases. Biochem Pharm. 152, 224–235 (2018).

PubMed  Google Scholar 

Ouyang, W. & O’Garra, A. IL-10 Family Cytokines IL-10 and IL-22: from Basic Science to Clinical Translation. Immunity 50, 871–891 (2019).

PubMed  Google Scholar 

Rothenberg, M. E. et al. Randomized Phase I Healthy Volunteer Study of UTTR1147A (IL-22Fc): A Potential Therapy for Epithelial Injury. Clin. Pharm. Ther. 105, 177–189 (2019).

Google Scholar 

Jin, L. et al. Integrative Analysis of Transcriptomic and Proteomic Profiling in Inflammatory Bowel Disease Colon Biopsies. Inflamm. Bowel Dis. 25, 1906–1918 (2019).

PubMed  Google Scholar 

Borenshtein, D., Nambiar, P. R., Groff, E. B., Fox, J. G. & Schauer, D. B. Development of fatal colitis in FVB mice infected with Citrobacter rodentium. Infect. Immun. 75, 3271–3281 (2007).

PubMed  PubMed Central  Google Scholar 

Omidbakhsh, A., Saeedi, M., Khoshnia, M., Marjani, A. & Hakimi, S. Micro-RNAs -106a and -362-3p in Peripheral Blood of Inflammatory Bowel Disease Patients. Open Biochem J. 12, 78–86 (2018).

PubMed  PubMed Central  Google Scholar 

Gersemann, M. et al. Differences in goblet cell differentiation between Crohn’s disease and ulcerative colitis. Differentiation 77, 84–94 (2009).

PubMed  Google Scholar 

Strugala, V., Dettmar, P. W. & Pearson, J. P. Thickness and continuity of the adherent colonic mucus barrier in active and quiescent ulcerative colitis and Crohn’s disease. Int J. Clin. Pr. 62, 762–769 (2008).

Google Scholar 

Schewe, M. et al. Secreted Phospholipases A2 Are Intestinal Stem Cell Niche Factors with Distinct Roles in Homeostasis, Inflammation, and Cancer. Cell Stem Cell. 19, 38–51 (2016).

PubMed  Google Scholar 

Lyons J, et al. Integrated in vivo multiomics analysis identifies p21-activated kinase signaling as a driver of colitis. Sci. Signal. 11, eaan3580 (2018).

Thiagarajah, J. R. & Verkman, A. S. Chloride channel-targeted therapy for secretory diarrheas. Curr. Opin. Pharm. 13, 888–894 (2013).

Google Scholar 

van der Post, S. et al. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut 68, 2142–2151 (2019).

PubMed  Google Scholar 

Odenwald, M. A. & Turner, J. R. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14, 9–21 (2017).

PubMed  Google Scholar 

Zihni, C., Mills, C., Matter, K. & Balda, M. S. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17, 564–580 (2016).

PubMed  Google Scholar 

Peake, M. A. et al. Identification of a transcriptional signature for the wound healing continuum. Wound Repair Regen. 22, 399–405 (2014).

PubMed  Google Scholar 

Martin, J. C. et al. Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell 178, 1493–1508 (2019).

PubMed  PubMed Central  Google Scholar 

Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

PubMed  Google Scholar 

Ota, N. et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat. Immunol. 12, 941–948 (2011).

PubMed  Google Scholar 

Kim S, et al. Amelioration of DSS-induced Acute Colitis in Mice by Recombinant Monomeric Human Interleukin-22. bioRxiv 22:e26 (2022).

Sugimoto, K. et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Invest 118, 534–544 (2008).

PubMed  PubMed Central  Google Scholar 

Cox, J. H. et al. Opposing consequences of IL-23 signaling mediated by innate and adaptive cells in chemically induced colitis in mice. Mucosal Immunol. 5, 99–109 (2012).

PubMed  Google Scholar 

Oltedal, S. et al. Expression profiling and intracellular localization studies of the novel Proline-, Histidine-, and Glycine-rich protein 1 suggest an essential role in gastro-intestinal epithelium and a potential clinical application in colorectal cancer diagnostics. BMC Gastroenterol. 18, 26 (2018).

PubMed  PubMed Central  Google Scholar 

Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019).

PubMed  PubMed Central  Google Scholar 

Schutte, B. C. et al. Discovery of five conserved beta-defensin gene clusters using a computational search strategy (vol 99, pg 2129, 2002). P Natl Acad. Sci. 99, 14611–14611 (2002).

Google Scholar 

Murtha, M. J. et al. Insulin receptor signaling regulates renal collecting duct and intercalated cell antibacterial defenses. J. Clin. Invest. 128, 5634–5646 (2018).

PubMed  PubMed Central  Google Scholar 

Ng, A. Y. et al. Inactivation of the transcription factor Elf3 in mice results in dysmorphogenesis and altered differentiation of intestinal epithelium. Gastroenterology 122, 1455–1466 (2002).

PubMed  Google Scholar 

Gregorieff, A. et al. The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. Gastroenterology 137, 1333–1345 (2009).

PubMed  Google Scholar 

Park, S. W. et al. The protein disulfide isomerase AGR2 is essential for production of intestinal mucus. Proc. Natl Acad. Sci.106, 6950–6955 (2009).

PubMed  PubMed Central  Google Scholar 

Ghaleb, A. M., McConnell, B. B., Kaestner, K. H. & Yang, V. W. Altered intestinal epithelial homeostasis in mice with intestine-specific deletion of the Kruppel-like factor 4 gene. Dev. Biol. 349, 310–320 (2011).

PubMed  Google Scholar 

Bergstrom, J. H. et al. AGR2, an endoplasmic reticulum protein, is secreted into the gastrointestinal mucus. PLoS One.9, e104186 (2014).

PubMed  PubMed Central  Google Scholar 

McCauley, H. A. & Guasch, G. Three cheers for the goblet cell: maintaining homeostasis in mucosal epithelia. Trends Mol. Med. 21, 492–503 (2015).

PubMed  Google Scholar 

Johansson, M. E. & Hansson, G. C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 16, 639–649 (2016).

PubMed  PubMed Central  Google Scholar 

Haila, S. et al. SLC26A2 (diastrophic dysplasia sulfate transporter) is expressed in developing and mature cartilage but also in other tissues and cell types. J. Histochem Cytochem. 49, 973–982 (2001).

PubMed  Google Scholar 

Alper, S. L. & Sharma, A. K. The SLC26 gene family of anion transporters and channels. Mol. Asp. Med. 34, 494–515 (2013).

Google Scholar 

Sterling, D., Brown, N. J. D., Supuran, C. T. & Casey, J. R. The functional and physical relationship between the DRA bicarbonate transporter and carbonic anhydrase II. Am. J. Physiol.-Cell Ph. 283, C1522–C1529 (2002).

Google Scholar 

Kato, A. & Romero, M. F. Regulation of electroneutral NaCl absorption by the small intestine. Annu Rev. Physiol. 73, 261–281 (2011).

PubMed  PubMed Central  Google Scholar 

Schweinfest, C. W. et al. slc26a3 (dra)-deficient mice display chloride-losing diarrhea, enhanced colonic proliferation, and distinct up-regulation of ion transporters in the colon. J. Biol. Chem. 281, 37962–37971 (2006).

PubMed  Google Scholar 

Wedenoja, S. et al. Update on SLC26A3 mutations in congenital chloride diarrhea. Hum. Mutat. 32, 715–722 (2011).

留言 (0)

沒有登入
gif