Statistical optimization of voriconazole nanoparticles loaded carboxymethyl chitosan-poloxamer based in situ gel for ocular delivery: In vitro, ex vivo, and toxicity assessment

Moemen D, Bedir T, Awad EA, Ellayeh A. Fungal keratitis: rapid diagnosis using methylene blue stain. Egypt J Basic Appl Sci [Internet]. 2015;2:289–94. Available from: https://doi.org/10.1016/j.ejbas.2015.08.001.

Al-Badriyeh D, Neoh CF, Stewart K, Kong D. Clinical utility of voriconazole eye drops in ophthalmic fungal keratitis. Clin Ophthalmol [Internet]. 2010;6:391–405. Available from: http://www.dovepress.com/clinical-utility-of-voriconazole-eye-drops-in-ophthalmic-fungal-kerati-peer-reviewed-article-OPTH.

Deibel JP, Cowling K. Ocular inflammation and infection. Emerg Med Clin North Am [Internet]. 2013;31:387–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0733862713000072.

Naik JB, Pardeshi SR, Patil RP, Patil PB, Mujumdar A. Mucoadhesive micro-/nano carriers in ophthalmic drug delivery: an overview. Bionanoscience [Internet]. 2020;10:564–82. Available from: https://link.springer.com/10.1007/s12668-020-00752-y.

Rawas-Qalaji M, Williams C-A. Advances in ocular drug delivery. Curr Eye Res [Internet]. 2012;37:345–56. Available from: http://www.tandfonline.com/doi/full/10.3109/02713683.2011.652286.

Jünemann AGM, Chorągiewicz T, Ozimek M, Grieb P, Rejdak R. Drug bioavailability from topically applied ocular drops. Does drop size matter?. Ophthalmol J [Internet]. 2016;1:29–35. Available from: https://journals.viamedica.pl/ophthalmology_journal/article/view/45278.

Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, et al. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials [Internet]. 2021;11:173. Available from: https://www.mdpi.com/2079-4991/11/1/173.

Huang D, Chen Y-S, Rupenthal ID. Overcoming ocular drug delivery barriers through the use of physical forces. Adv Drug Deliv Rev [Internet]. 2018;126:96–112. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X17301898.

Ansari Z, Miller D, Galor A. Current thoughts in fungal keratitis: diagnosis and treatment. Curr Fungal Infect Rep [Internet]. 2013;7:209–18. Available from: http://link.springer.com/10.1007/s12281-013-0150-1.

Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci [Internet]. 2021;288:102342. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0001868620306114.

Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci [Internet]. 2019;14:1–15. Available from: https://linkinghub.elsevier.com/retrieve/pii/S181808761730990X.

Orasugh JT, Dutta S, Das D, Pal C, Zaman A, Das S, et al. Sustained release of ketorolac tromethamine from poloxamer 407/cellulose nanofibrils graft nanocollagen based ophthalmic formulations. Int J Biol Macromol [Internet]. 2019;140:441–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813019348937.

Almeida H, Amaral MH, Lobão P, Lobo JMS. In situ gelling systems: a strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov Today [Internet]. 2014;19:400–12. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644613003279.

Marangon FB, Miller D, Giaconi JA, Alfonso EC. In vitro investigation of voriconazole susceptibility for keratitis and endophthalmitis fungal pathogens. Am J Ophthalmol [Internet]. 2004;137:820–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0002939403015265.

Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet [Internet]. 2006;45:649–63. Available from: http://link.springer.com/10.2165/00003088-200645070-00002.

Üstündağ Okur N, Yozgatlı V, Okur ME, Yoltaş A, Siafaka PI. Improving therapeutic efficacy of voriconazole against fungal keratitis: thermo-sensitive in situ gels as ophthalmic drug carriers. J Drug Deliv Sci Technol [Internet]. 2019;49:323–33. Available from: https://linkinghub.elsevier.com/retrieve/pii/S177322471831089X.

Fahmy AM, Hassan M, El-Setouhy DA, Tayel SA, Al-Mahallawi AM. Statistical optimization of hyaluronic acid enriched ultradeformable elastosomes for ocular delivery of voriconazole via Box-Behnken design: in vitro characterization and in vivo evaluation. Drug Deliv [Internet]. 2021;28:77–86. Available from: https://www.tandfonline.com/doi/full/10.1080/10717544.2020.1858997.

Said M, Aboelwafa AA, Elshafeey AH, Elsayed I. Central composite optimization of ocular mucoadhesive cubosomes for enhanced bioavailability and controlled delivery of voriconazole. J Drug Deliv Sci Technol [Internet]. 2021;61:102075. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1773224720313642.

Zheng Y-H, Ma Y-Y, Ding Y, Chen X-Q, Gao G-X. An insight into new strategies to combat antifungal drug resistance. Drug Des Devel Ther [Internet]. 2018;12:3807–16. Available from: https://www.dovepress.com/an-insight-into-new-strategies-to-combat-antifungal-drug-resistance-peer-reviewed-article-DDDT.

Tan Y, Leonhard M, Moser D, Ma S, Schneider-Stickler B. Long-term antibiofilm activity of carboxymethyl chitosan on mixed biofilm on silicone. Laryngoscope [Internet]. 2016;126:E404–8. Available from: https://onlinelibrary.wiley.com/doi/10.1002/lary.26096.

Kurakula M, Naveen NR, Patel B, Manne R, Patel DB. Preparation, optimization and evaluation of chitosan-based avanafil nanocomplex utilizing antioxidants for enhanced neuroprotective effect on PC12 cells. Gels (Basel, Switzerland) [Internet]. 2021;7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34287358.

Dumont VC, Mansur AAP, Carvalho SM, Medeiros Borsagli FGL, Pereira MM, Mansur HS. Chitosan and carboxymethyl-chitosan capping ligands: effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes. Mater Sci Eng C [Internet]. 2016;59:265–77. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0928493115304483.

Tan Y, Leonhard M, Moser D, Ma S, Schneider-Stickler B. Inhibition of mixed fungal and bacterial biofilms on silicone by carboxymethyl chitosan. Colloids Surf B Biointerfaces [Internet]. 2016;148:193–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776516306385.

Jaikumar D, Sajesh KM, Soumya S, Nimal TR, Chennazhi KP, Nair SV, et al. Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. Int J Biol Macromol [Internet]. 2015;74:318–26. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813014008423.

Scheeren LE, Nogueira DR, Macedo LB, Vinardell MP, Mitjans M, Infante MR, et al. PEGylated and poloxamer-modified chitosan nanoparticles incorporating a lysine-based surfactant for pH-triggered doxorubicin release. Colloids Surfaces B Biointerfaces [Internet]. 2016;138:117–27. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776515303386.

Al Khateb K, Ozhmukhametova EK, Mussin MN, Seilkhanov SK, Rakhypbekov TK, Lau WM, et al. In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery. Int J Pharm [Internet]. 2016;502:70–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S037851731630120X.

Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M del P, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology [Internet]. 2018;16:71. Available from: https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-018-0392-8.

Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine [Internet]. 2012;7:1253–71. Available from: https://www.futuremedicine.com/doi/10.2217/nnm.12.87.

Ige P, Pardeshi S, Sonawane R. Development of pH-dependent nanospheres for nebulisation-in vitro diffusion, aerodynamic and cytotoxicity studies. Drug Res (Stuttg) [Internet]. 2018;68:680–6. Available from: http://www.thieme-connect.de/DOI/DOI?10.1055/a-0595-7678.

Deshmukh R, Wagh P, Naik J. Solvent evaporation and spray drying technique for micro- and nanospheres/particles preparation: a review. Dry Technol [Internet]. 2016;34:1758–72. Available from: https://www.tandfonline.com/doi/full/10.1080/07373937.2016.1232271.

An NT, Thien DT, Dong NT, Le Dung P. Water-soluble N-carboxymethylchitosan derivatives: preparation, characteristics and its application. Carbohydr Polym [Internet]. 2009;75:489–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861708003986.

Bukzem AL, Signini R, dos Santos DM, Lião LM, Ascheri DPR. Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. Int J Biol Macromol [Internet]. 2016;85:615–24. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813016300174.

Colombo M, Staufenbiel S, Rühl E, Bodmeier R. In situ determination of the saturation solubility of nanocrystals of poorly soluble drugs for dermal application. Int J Pharm [Internet]. 2017;521:156–66. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517317301102.

Honary S, Ebrahimi P, Hadianamrei R. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology. Pharm Dev Technol [Internet]. 2014;19:987–98. Available from: http://www.tandfonline.com/doi/full/10.3109/10837450.2013.846375.

Pawar P, Kashyap H, Malhotra S, Sindhu R. Hp--CD-voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment. Biomed Res Int [Internet]. 2013;2013:1–9. Available from: http://www.hindawi.com/journals/bmri/2013/341218/.

Pardeshi S, Patil P, Rajput R, Mujumdar A, Naik J. Preparation and characterization of sustained release pirfenidone loaded microparticles for pulmonary drug delivery: Spray drying approach. Dry Technol [Internet]. 2021;39:337–47. Available from: https://www.tandfonline.com/doi/full/10.1080/07373937.2020.1833213.

Pardeshi SR, Mistari HA, Jain RS, Pardeshi PR, Rajput RL, Mahajan DS, et al. Development and optimization of sustained release moxifloxacin hydrochloride loaded nanoemulsion for ophthalmic drug delivery: a 32 factorial design approach. Micro Nanosyst [Internet]. 2020;13:292–302. Available from: https://www.eurekaselect.com/185332/article.

Patil GK, Patil PB, Pardeshi SR, Rajput RL, Sonawane SH, Mujumdar A, et al. Effect of process parameters on the recovery of lactose in an antisolvent acetone/acetone-ethanol mixture: a comparative study based on sonication medium. Ultrason Sonochem [Internet]. 2020;67:105128. Available from: https://linkinghub.elsevier.com/retrieve/pii/S135041771931990X.

Tzaneva D, Simitchiev A, Petkova N et al. Synthesis of carboxymethyl chitosan and its rheological behaviour in pharmaceutical and cosmetic emulsions. J Appl Pharm Sci [Internet]. 2017;7:70–8. Available from: http://www.japsonline.com/abstract.php?article_id=2442.

Song Q, Zhang Z, Gao J, Ding C. Synthesis and property studies of N-carboxymethyl chitosan. J Appl Polym Sci [Internet]. 2011;119:3282–5. Available from: https://onlinelibrary.wiley.com/doi/10.1002/app.32925.

More MP, Patil MD, Pandey AP, Patil PO, Deshmukh PK. Fabrication and characterization of graphene-based hybrid nanocomposite: assessment of antibacterial potential and biomedical application. Artif Cells Nanomed Biotechnol [Internet]. 2017;45:1496–508. Available from: https://www.tandfonline.com/doi/full/10.1080/21691401.2016.1252384.

Pandit J, Sultana Y, Aqil M. Chitosan-coated PLGA nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. Artif Cells Nanomed Biotechnol [Internet]. 2017;45:1397–407. Available from: https://www.tandfonline.com/doi/full/10.1080/21691401.2016.1243545.

Kesarla R, Tank T, Vora PA, Shah T, Parmar S, Omri A. Preparation and evaluation of nanoparticles loaded ophthalmic in situ gel. Drug Deliv [Internet]. 2016;23:2363–70. Available from: https://www.tandfonline.com/doi/full/10.3109/10717544.2014.987333.

Pardeshi CV, Belgamwar VS, Tekade AR, Surana SJ. Novel surface modified polymer–lipid hybrid nanoparticles as intranasal carriers for ropinirole hydrochloride: in vitro, ex vivo and in vivo pharmacodynamic evaluation. J Mater Sci Mater Med [Internet]. 2013;24:2101–15. Available from: http://link.springer.com/10.1007/s10856-013-4965-7.

Manne R, Devarajan A. Development of nicotinic acid controlled release tablets with natural phenolic anti-oxidant polymer by encapsulation technique. J Nat Remedies [Internet]. 2021;20:204. Available from: http://www.informaticsjournals.com/index.php/jnr/article/view/25514.

Kumar R, Sinha VR. Preparation and optimization of voriconazole microemulsion for ocular delivery. Colloids Surf B Biointerfaces [Internet]. 2014;117:82–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0927776514000745.

Elsewedy HS, Dhubiab BE, Mahdy MA, Elnahas HM. Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles. Drug Deliv [Internet]. 2020;27:1134–46. Available from: https://www.tandfonline.com/doi/full/10.1080/10717544.2020.1797237.

Díaz-Tomé V, García-Otero X, Varela-Fernández R, Martín-Pastor M, Conde-Penedo A, Aguiar P, et al. In situ forming and mucoadhesive ophthalmic voriconazole/HPβCD hydrogels for the treatment of fungal keratitis. Int J Pharm [Internet]. 2021;597:120318. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517321001228.

Veloso DFMC, Benedetti NIGM, Ávila RI, Bastos TSA, Silva TC, Silva MRR, et al. Intravenous delivery of a liposomal formulation of voriconazole improves drug pharmacokinetics, tissue distribution, and enhances antifungal activity. Drug Deliv [Internet]. 2018;25:1585–94. Available from: https://www.tandfonline.com/doi/full/10.1080/10717544.2018.1492046.

Jacob S, Nair AB, Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater Res [Internet]. 2020;24:3. Available from: https://biomaterialsres.biomedcentral.com/articles/10.1186/s40824-020-0184-8.

Kohane DS. Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng [Internet]. 2007;96:203–9. Available from: https://onlinelibrary.wiley.com/doi/10.1002/bit.21301.

Bernard VE, Sofie V, MJ A, Jan V, Ludo F, Jan VH, et al. Microcrystalline cellulose, a useful alternative for sucrose as a matrix former during freeze-drying of drug nanosuspensions – a case study with itraconazole. Eur J Pharm Biopharm [Internet]. 2008;70:590–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0939641108002221.

Wang N, Hsu C, Zhu L, Tseng S, Hsu J-P. Influence of metal oxide nanoparticles concentration on their zeta potential. J Colloid Interface Sci [Internet]. 2013;407:22–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0021979713004979.

Miao H, Yang J, Wei Y, Li W, Zhu Y. Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. Appl Catal B Environ [Internet]. 2018;239:61–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0926337318307331.

Younes NF, Abdel-Halim SA, Elassasy AI. Corneal targeted sertaconazole nitrate loaded cubosomes: preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int J Pharm [Internet]. 2018;553:386–97. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517318308007.

Ardani HK, Imawan C, Handayani W, Djuhana D, Harmoko A, Fauzia V. Enhancement of the stability of silver nanoparticles synthesized using aqueous extract of Diospyros discolor Willd. leaves using polyvinyl alcohol. IOP Conf Ser Mater Sci Eng [Internet]. 2017;188:012056. Available from: https://iopscience.iop.org/article/10.1088/1757-899X/188/1/012056.

Khan TA, Peh KK, Ch’ng HS. Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J Pharm Pharm Sci [Internet]. 2002;5:205–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12553887.

Upadhyaya L, Singh J, Agarwal V, Tewari RP. The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Control Release [Internet]. 2014;186:54–87. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168365914002764.

Shivam UU, Siddhi KC, Devarshi UG, Umeshkumar MU, Jayvadan KP. Nanoparticles laden in situ gel for sustained drug release after topical ocular administration. J Drug Deliv Sci Technol [Internet]. 2020;57:101736. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1773224719311992.

Lim L, Ah-Kee E, Collins C. Common eye drops and their implications for pH measurements in the management of chemical eye injuries. Int J Ophthalmol. 2014;7:1067–8.

PubMed  PubMed Central  Google Scholar 

Kumar S, Haglund BO, Himmelstein KJ. In situ-forming gels for ophthalmic drug delivery. J Ocul Pharmacol Ther [Internet]. 1994;10:47–56. https://doi.org/10.1089/jop.1994.10.47.

Yu Z-G, Geng Z-X, Liu T-F, Jiang F. In vitro and in vivo evaluation of an in situ forming gel system for sustained delivery of Florfenicol. J Vet Pharmacol Ther [Internet]. 2015;38:271–7. https://doi.org/10.1111/jvp.12171.

Article  CAS  PubMed  Google Scholar 

Wadetwar RN, Agrawal AR, Kanojiya PS. In situ gel containing Bimatoprost solid lipid nanoparticles for ocular delivery: in-vitro and ex-vivo evaluation. J Drug Deliv Sci Technol [Internet]. 2020;56:101575. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1773224719311396.

Thomas PA, Kaliamurthy J. Mycotic keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect [Internet]. 2013;19:210–20. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1198743X14601269.

Tian B, Yan Q, Wang J, Ding C, Sai S. Enhanced antifungal activity of voriconazole-loaded nanostructured lipid carriers against Candida albicans with a dimorphic switching model. Int J Nanomedicine [Internet]. 2017;Volume 12:7131–41. Available from: https://www.dovepress.com/enhanced-antifungal-activity-of-voriconazole-loaded-nanostructured-lip-peer-reviewed-article-IJN.

Esentürk İ, Balkan T, Özhan G, Döşler S, Güngör S, Erdal MS, et al. Voriconazole incorporated nanofiber formulations for topical application: preparation, characterization and antifungal activity studies against Candida species. Pharm Dev Technol [Internet]. 2020;25:440–53. Available from: https://doi.org/10.1080/10837450.2019.1706563.

Nemati Shizari L, Mohammadpour Dounighi N, Bayat M, Mosavari N. A new amphotericin B-loaded trimethyl chitosan nanoparticles as a drug delivery system and antifungal activity on Candida albicans biofilm. Arch Razi Inst [Internet]. 2021;76:571–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/34824750.

Tan Y, Leonhard M, Moser D, Schneider-Stickler B. Antibiofilm activity of carboxymethyl chitosan on the biofilms of non-Candida albicans Candida species. Carbohydr Polym [Internet]. 2016;149:77–82. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0144861716304787.

Peña A, Sánchez NS, Calahorra M. Effects of chitosan on Candida albicans: conditions for its antifungal activity. Biomed Res Int [Internet]. 2013;2013:1–15. Available from: http://www.hindawi.com/journals/bmri/2013/527549/.

Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, et al. Nanoparticle-based drug delivery system: the magic bullet for the treatment of chronic pulmonary diseases. Mol Pharm [Internet]. 2021;acs.molpharmaceut.1c00491. Available https://doi.org/10.1021/acs.molpharmaceut.1c00491.

Huang S, Yu Z, Zhang Y, Qi C, Zhang S. In situ green synthesis of antimicrobial carboxymethyl chitosan–nanosilver hybrids with controlled silver release. Int J Nanomedicine [Internet]. 2017;Volume 12:3181–91. Available from: https://www.dovepress.com/in-situ-green-synthesis-of-antimicrobial-carboxymethyl-chitosanndashna-peer-reviewed-article-IJN.

Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res [Internet]. 2004;339:2693–700. Available from: https://linkinghub.elsevier.com/retrieve/pii/S000862150400388X.

Sharma D, Rajput J, Kaith BS, Kaur M, Sharma S. Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films [Internet]. 2010;519:1224–9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040609010011880.

Guo Z, Xing R, Yu H, Liu S, Li P. Antifungal activity of quaternized carboxymethyl chitosan. 2008 2nd Int Conf Bioinforma Biomed Eng [Internet]. IEEE; 2008. p. 4583–6. Available from: http://ieeexplore.ieee.org/document/4535185/.

Yamakoshi Y. Dental and oral biology, biochemistry. In: Michael Caplan, editor. Ref Modul Biomed Sci [Internet]. Amsterdam, Netherland: Elsevier; 2014. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128012383000374.

Pardeshi CV, Agnihotri VV, Patil KY, Pardeshi SR, Surana SJ. Mannose-anchored N,N,N-trimethyl chitosan nanoparticles for pulmonary administration of etofylline. Int J Biol Macromol [Internet]. 2020;165:445–59. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0141813020345220.

Yu Z, Sun X, Song H, Wang W, Ye Z, Shi L, et al. Glutathione-responsive carboxymethyl chitosan nanoparticles for controlled release of herbicides. Mater Sci Appl [Internet]. 2015;06:591–604. Available from: https://doi.org/10.4236/msa.2015.66062.

Teng Z, Luo Y, Wang Q. Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food Chem [Internet]. 2013;141:524–32. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0308814613003464.

Yan H, Feng Y, Hu W, Cheng C, Liu R, Wang C, et al. Preparation and evaluation of alginate-chitosan-bentonite based beads for the delivery of pesticides in controlled-release formulation. Asian J Chem [Internet]. 2013;25:9936–40. Available from: http://www.asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=25_18_112.

Paul DR. Elaborations on the Higuchi model for drug delivery. Int J Pharm [Internet]. 2011;418:13–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517310008124.

Rathbone, Hadgraft R and L. Mathematical models of drug release. In: Marcos Luciano Bruschi, editor. Strateg to Modify Drug Release from Pharm Syst [Internet]. Sawston, Cambridge, CB22 3HJ, UK: Woodhead Publishing Limited; 2015. p. 63–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780081000922000059.

Ricci EJ, Lunardi LO, Nanclares DMA, Marchetti JM. Sustained release of lidocaine from Poloxamer 407 gels. Int J Pharm [Internet]. 2005;288:235–44. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0378517304005927.

留言 (0)

沒有登入
gif