Mitochondrial dysfunction and impaired growth of glioblastoma cell lines caused by antimicrobial agents inducing ferroptosis under glucose starvation

Bao Z, Chen K, Krepel S, Tang P, Gong W, Zhang M, et al. High glucose promotes human glioblastoma cell growth by increasing the expression and function of chemoattractant and growth factor receptors. Transl Oncol. 2019;12:1155–63.

PubMed  PubMed Central  Article  Google Scholar 

Ostrom QT, Gittleman H, Fulop J, Liu M, Blanda R, Kromer C, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol. 2015;17:iv1–62.

PubMed  PubMed Central  Article  Google Scholar 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

CAS  PubMed  Article  Google Scholar 

De Bonis P, Albanese A, Lofrese G, de Waure C, Mangiola A, Pettorini BL, et al. Postoperative infection may influence survival in patients with glioblastoma: simply a myth? Neurosurgery. 2011;69:864–8.

PubMed  Article  Google Scholar 

Chen W, Wang Y, Zhao B, Liu P, Liu L, Wang Y, et al. Optimal therapies for recurrent glioblastoma: a Bayesian network meta-analysis. Front Oncol. 2021;11:641878.

PubMed  PubMed Central  Article  Google Scholar 

Jiapaer S, Furuta T, Tanaka S, Kitabayashi T, Nakada M. Potential strategies overcoming the temozolomide resistance for glioblastoma. Neurol Med Chir. 2018;58:405–21.

Article  Google Scholar 

Wallace DC. Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol. 2005;70:363–74.

CAS  PubMed  Article  Google Scholar 

Vyas S, Zaganjor E, Haigis MC. Mitochondria and cancer. Cell. 2016;166:555–66.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation. Oncol Lett. 2012;4:1151–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS. Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res. 2018;24:2482–90.

CAS  PubMed  Article  Google Scholar 

De Luca A, Fiorillo M, Peiris-Pagès M, Ozsvari B, Smith DL, Sanchez-Alvarez R, et al. Mitochondrial biogenesis is required for the anchorage-independent survival and propagation of stem-like cancer cells. Oncotarget. 2015;6:14777–95.

PubMed  PubMed Central  Article  Google Scholar 

Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ. The origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer. 2005;5:899–904.

CAS  PubMed  Article  Google Scholar 

Karp I, Lyakhovich A. Targeting cancer stem cells with antibiotics inducing mitochondrial dysfunction as an alternative anticancer therapy. Biochem Pharm. 2022;198:114966.

CAS  PubMed  Article  Google Scholar 

Beck B, Blanpain C. Unravelling cancer stem cell potential. Nat Rev Cancer. 2013;13:727–38.

CAS  PubMed  Article  Google Scholar 

Iranmanesh Y, Jiang B, Favour OC, Dou Z, Wu J, Li J, et al. Mitochondria’s role in the maintenance of cancer stem cells in glioblastoma. Front Oncol. 2021;11:582694.

PubMed  PubMed Central  Article  Google Scholar 

Matsumoto T, Uchiumi T, Monji K, Yagi M, Setoyama D, Amamoto R, et al. Doxycycline induces apoptosis via ER stress selectively to cells with a cancer stem cell-like properties: importance of stem cell plasticity. Oncogenesis. 2017;6:397.

PubMed  PubMed Central  Article  Google Scholar 

Monji K, Uchiumi T, Hoshizawa S, Yagi M, Matsumoto T, Setoyama D, et al. Serum depletion induced cancer stem cell-like phenotype due to nitric oxide synthesis in oncogenic HRas transformed cells. Oncotarget. 2016;7:75221–34.

PubMed  PubMed Central  Article  Google Scholar 

Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A, Martinez-Outschoorn UE, et al. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget. 2015;6:4569–84.

PubMed  PubMed Central  Article  Google Scholar 

Ulbrich B, Mertens G, Nierhaus KH. Cooperative binding of 3′-fragments of transfer ribonucleic acid to the peptidyltransferase center of Escherichia coli ribosomes. Arch Biochem Biophys. 1978;190:149–54.

CAS  PubMed  Article  Google Scholar 

Denekamp J, Daşu A, Waites A. Vasculature and microenvironmental gradients: the missing links in novel approaches to cancer therapy? Adv Enzym Regul. 1998;38:281–99.

CAS  Article  Google Scholar 

Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11:88.

PubMed  PubMed Central  Article  Google Scholar 

Itoh K, Mimura J, Yamamoto M. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid Redox Signal. 2010;13:1665–78.

CAS  PubMed  Article  Google Scholar 

Chiang SK, Chen SE, Chang LC. A dual role of heme Oxygenase-1 in cancer cells. Int J Mol Sci. 2018;20:1–18.

Article  Google Scholar 

Lee DH, Park JS, Lee YS, Han J, Lee DK, Kwon SW, et al. SQSTM1/p62 activates NFE2L2/NRF2 via ULK1-mediated autophagic KEAP1 degradation and protects mouse liver from lipotoxicity. Autophagy. 2020;16:1949–73.

PubMed  PubMed Central  Article  Google Scholar 

Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26:165–76.

CAS  PubMed  Article  Google Scholar 

He X, Yao Q, Fan D, Duan L, You Y, Liang W, et al. Cephalosporin antibiotics specifically and selectively target nasopharyngeal carcinoma through HMOX1-induced ferroptosis. Life Sci. 2021;277:119457.

CAS  PubMed  Article  Google Scholar 

Huang Y, Wan Z, Tang Y, Xu J, Laboret B, Nallamothu S, et al. Pantothenate kinase 2 interacts with PINK1 to regulate mitochondrial quality control via acetyl-CoA metabolism. Nat Commun. 2022;13:2412.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA. 2011;108:10190–5.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rogers GW, Brand MD, Petrosyan S, Ashok D, Elorza AA, Ferrick DA, et al. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS ONE. 2011;6:e21746.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Balbi HJ. Chloramphenicol: a review. Pediatr Rev. 2004;25:284–8.

PubMed  Article  Google Scholar 

Li CH, Cheng YW, Liao PL, Yang YT, Kang JJ. Chloramphenicol causes mitochondrial stress, decreases ATP biosynthesis, induces matrix metalloproteinase-13 expression, and solid-tumor cell invasion. Toxicol Sci. 2010;116:140–50.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chukwudi CU, Good L. Doxycycline inhibits pre-rRNA processing and mature rRNA formation in E. coli. J Antibiot. 2019;72:225–36.

CAS  Article  Google Scholar 

Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, et al. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab. 2013;17:73–84.

CAS  PubMed  Article  Google Scholar 

Yin S, Cao W. Toll-like receptor signaling induces Nrf2 pathway activation through p62-triggered Keap1 degradation. Mol Cell Biol. 2015;35:2673–83.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013;51:618–31.

CAS  PubMed  Article  Google Scholar 

Yagi M, Toshima T, Amamoto R, Do Y, Hirai H, Setoyama D, et al. Mitochondrial translation deficiency impairs NAD(+) -mediated lysosomal acidification. EMBO J. 2021;40:e105268.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tang D, Kroemer G. Ferroptosis. Curr Biol. 2020;30:R1292–7.

CAS  PubMed  Article  Google Scholar 

Subburayan K, Thayyullathil F, Pallichankandy S, Cheratta AR, Galadari S. Superoxide-mediated ferroptosis in human cancer cells induced by sodium selenite. Transl Oncol. 2020;13:100843.

PubMed  PubMed Central 

留言 (0)

沒有登入
gif