Nitrospira in wastewater treatment: applications, opportunities and research gaps

Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31:533–538. https://doi.org/10.1038/nbt.2579

Article  Google Scholar 

Al-Hazmi HE, Lu X, Majtacz J, Kowal P, Xie L, Mąkinia J (2021) Optimization of the aeration strategies in a deammonification sequencing batch reactor for efficient nitrogen removal and mitigation of N2O Production. Environ Sci Technol 55:1218–1230. https://doi.org/10.1021/acs.est.0c04229

Article  Google Scholar 

Annavajhala MK, Kapoor V, Santo-Domingo J, Chandran K (2018) comammox functionality identified in diverse engineered biological wastewater treatment systems. Environ Sci Technol Lett 5:110–116. https://doi.org/10.1021/acs.estlett.7b00577

Article  Google Scholar 

Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of Nitrification by Ammonia and Nitrous Acid. J Water Pollut Control Fed 48:835–852

Google Scholar 

Arp DJ, Sayavedra-Soto LA, Hommes NG (2002) Molecular Biology and Biochemistry od Ammonia Oxidation by Nitrosomonas europaea. Arc Microbiol 178:250–255. https://doi.org/10.1007/s00203-002-0452-0

Article  Google Scholar 

Bartelme RP, McLellan SL, Newton RJ (2017) Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira. Front Microbiol 8:101. https://doi.org/10.3389/fmicb.2017.00101

Article  Google Scholar 

Bayer B, Saito MA, McIlvin MR, Lücker S, Moran DM, Lankiewicz TS, Dupont CL, Santoro AE (2021) Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions. ISME J 15(1025):1039. https://doi.org/10.1038/s41396-020-00828-3

Article  Google Scholar 

Beach NK, Noguera DR (2019) Design and assessment of species-level qPCR primers targeting comammox. Front Microbiol 10:36. https://doi.org/10.3389/fmicb.2019.00036

Article  Google Scholar 

Berg IA (2011) Ecological aspects of the distribution of different autotrophic co2 fixation pathways. Appl Environ Microbiol 77:1925–1936. https://doi.org/10.1128/AEM.02473-10

Article  Google Scholar 

Blackburne R, Vadivelu VM, Yuan Z, Keller J (2007) Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Res 41:3033–3042. https://doi.org/10.1016/j.watres.2007.01.043

Article  Google Scholar 

Camejo PY, Domingo JS, McMahon KD, Noguera DR (2017) Genome-Enabled Insights into the Ecophysiology of the Comammox Bacterium “CandidatusNitrospira nitrosa.” mSystems. https://doi.org/10.1128/mSystems.00059-17

Article  Google Scholar 

Cao Y, van Loosdrecht MCM, Daigger GT (2017) Mainstream partial nitritation–anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl Microbiol Biotechnol 101:1365–1383. https://doi.org/10.1007/s00253-016-8058-7

Article  Google Scholar 

Cao Y, Kwok BH, van Loosdrecht MCM, Daigger G, Png HY, Long WY, Eng OK (2018) The influence of dissolved oxygen on partial nitritation/anammox performance and microbial community of the 200,000 m3/d activated sludge process at the Changi water reclamation plant (2011 to 2016). Water Sci Technol 78(3):634–643. https://doi.org/10.2166/wst.2018.333

Article  Google Scholar 

Caranto JD, Lancaster KM (2017) Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proc Natl Acad Sci USA 114:8217–8222. https://doi.org/10.1073/pnas.1704504114

Article  Google Scholar 

Chao Y, Mao Y, Yu K, Zhang T (2016) Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach. Appl Microbiol Biotechnol 100:8225–8237. https://doi.org/10.1007/s00253-016-7655-9

Article  Google Scholar 

Chen G, Bai R, Zhang Y, Zhao B, Xiao Y (2022a) Application of metagenomics to biological wastewater treatment. Sci Total Environ 807:150737. https://doi.org/10.1016/j.scitotenv.2021.150737

Article  Google Scholar 

Chen Y, Sun Y, Zhang J, Li J, Peng Y (2022b) A novel control strategy to strengthen nitrogen removal from domestic wastewater through eliminating nitrite oxidizing bacteria in a plug-flow process. Bioresour Technol 350:126856. https://doi.org/10.1016/j.biortech.2022.126856

Article  Google Scholar 

Costa E, Pérez J, Kreft J-U (2006) Why is metabolic labour divided in nitrification? Trends Microbiol 14:213–219. https://doi.org/10.1016/j.tim.2006.03.006

Article  Google Scholar 

Cotto I, Dai Z, Huo L, Anderson CL, Vilardi KJ, Ijaz U, Khunjar W, Wilson C, De Clippeleir H, Gilmore K, Bailey E, Pinto AJ (2020) Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems. Water Res 169:115268. https://doi.org/10.1016/j.watres.2019.115268

Article  Google Scholar 

Courtens EN, Spieck E, Vilchez-Vargas R, Bodé S, Boeckx P, Schouten S, Jauregui R, Pieper DH, Vlaeminck SE, Boon N (2016) A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal. ISME J 10:2293–2303. https://doi.org/10.1038/ismej.2016.8

Article  Google Scholar 

Daebeler A, Kitzinger K, Koch H, Herbold CW, Steinfeder M, Schwarz J, Zechmeister T, Karst SM, Albertsen M, Nielsen PH, Wagner M, Daims H (2020) Exploring the upper pH limits of nitrite oxidation: diversity, ecophysiology, and adaptive traits of haloalkalitolerant Nitrospira. ISME J 14:2967–2979. https://doi.org/10.1038/s41396-020-0724-1

Article  Google Scholar 

Daigger GT (2014) Oxygen and Carbon Requirements for Biological Nitrogen Removal Processes Accomplishing Nitrification, Nitritation, and Anammox. Water Environ Res 86:204–209. https://doi.org/10.2175/106143013X13807328849459

Article  Google Scholar 

Daims H, Wagner M (2018) Nitrospira. Trends Microbiol 26:462–463. https://doi.org/10.1016/j.tim.2018.02.001

Article  Google Scholar 

Daims H, Nielsen JL, Nielsen PH, Schleifer K-H, Wagner M (2001) In Situ Characterization of Nitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants. Appl Environ Microbiol 67:5273–5284. https://doi.org/10.1128/AEM.67.11.5273-5284.2001

Article  Google Scholar 

Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. https://doi.org/10.1038/nature16461

Article  Google Scholar 

Daims H, Lücker S, Wagner M (2016) A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. Trends Microbiol 24:699–712. https://doi.org/10.1016/j.tim.2016.05.004

Article  Google Scholar 

Duan H, Ye L, Lu X, Yuan Z (2019) Overcoming Nitrite Oxidizing Bacteria Adaptation through Alternating Sludge Treatment with Free Nitrous Acid and Free Ammonia. Environ Sci Technol 53:1937–1946. https://doi.org/10.1021/acs.est.8b06148

Article  Google Scholar 

Ehrich S, Behrens D, Lebedeva E, Ludwig W, Bock E (1995) A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship. Arch Microbiol 164:16–23. https://doi.org/10.1007/BF02568729

Article  Google Scholar 

Fan X-Y, Gao J-F, Pan K-L, Li D-C, Dai H-H (2017) Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant. RSC Adv 7:56317–56327. https://doi.org/10.1039/C7RA10704H

Article  Google Scholar 

Feng Y, Lu X, Al-Hazmi H, Mąkinia J (2017) An overview of the strategies for the deammonification process start-up and recovery after accidental operational failures. Rev Environ Sci Biotechnol 16:541–568. https://doi.org/10.1007/s11157-017-9441-2

Article  Google Scholar 

Fowler SJ, Palomo A, Dechesne A, Mines PD, Smets BF (2018) Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ Microbiol 20:1002–1015. https://doi.org/10.1111/1462-2920.14033

Article  Google Scholar 

Fujitani H, Momiuchi K, Ishii K, Nomachi M, Kikuchi S, Ushiki N, Sekiguchi Y, Tsuneda S (2020a) Genomic and Physiological Characteristics of a Novel Nitrite-Oxidizing Nitrospira Strain Isolated From a Drinking Water Treatment Plant. Front Microbiol. https://doi.org/10.3389/fmicb.2020.545190

Article  Google Scholar 

Fujitani H, Manami Nomachi Y, Takahashi YH, Eguchi M, Satoshi T (2020b) Successful enrichment of low-abundant comammox Nitrospira from nitrifying granules under ammonia-limited conditions. FEMS Microbiol Letters. https://doi.org/10.1093/femsle/fnaa025

Article  Google Scholar 

Gonzalez-Martinez A, Rodriguez-Sanchez A, van Loosdrecht MCM, Gonzalez-Lopez J, Vahala R (2016) Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. Environ Sci Pollut Res 23:25501–25511. https://doi.org/10.1007/s11356-016-7914-4

Article  Google Scholar 

Gottshall EY, Bryson SJ, Cogert KI, Landreau M, Sedlacek CJ, Stahl DA, Daims H, Winkler M (2021) Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria. Water Res 202:117426. https://doi.org/10.1016/j.watres.2021.117426

Article  Google Scholar 

Gruber-Dorninger C, Pester M, Kitzinger K, Savio DF, Loy A, Rattei T, Wagner M, Daims H (2015) Functionally relevant diversity of closely related Nitrospira in activated sludge. ISME J 9:643–655. https://doi.org/10.1038/ismej.2014.156

Article  Google Scholar 

Gülay AS, Fowler J, Tatari K, Thamdrup B, Albrechtsen H-J, Al-Soud Waleed A, Sørensen SJ, Smets BF (2019) DNA- and RNA-SIP Reveal Nitrospira spp. as Key Drivers of Nitrification in Groundwater-Fed Biofilters. mBio. https://doi.org/10.1128/mBio.01870-19

Article  Google Scholar 

Haaijer SCM, Ji K, Van Niftrik L, Hoischen A, Speth DR, Jetten MSM, Sinninghe Damsté JS, Op Den Camp HJM (2013) A novel marine nitrite-oxidizing Nitrospira species from Dutch coastal North Sea water. Front Microbiol. https://doi.org/10.3389/fmicb.2013.00060

Article  Google Scholar 

Han P, Yu Y, Zhou L, Tian Z, Li Z, Hou L, Liu M, Wu Q, Wagner M, Men Y (2019) Specific Micropollutant Biotransformation Pattern by the Comammox Bacterium Nitrospira inopinata. Environ Sci Technol 53:8695–8705. https://doi.org/10.1021/acs.est.9b01037

Article  Google Scholar 

Han P, Wu D, Sun D, Zhao M, Wang M, Wen T, Zhang J, Hou L, Liu M, Klümper U, Zheng Y, Dong H-P, Liang X, Yin G (2021) N2O and NOy production by the comammox bacterium Nitrospira inopinata in comparison with canonical ammonia oxidizers. Water Res 190:116728. https://doi.org/10.1016/j.watres.2020.116728

Article  Google Scholar 

Hansen SH, Stensballe A, Nielsen PH, Herbst F-A (2014) Metaproteomics: Evaluation of protein extraction from activated sludge. Proteomics 14:2535–2539. https://doi.org/10.1002/pmic.201400167

Article  Google Scholar 

Harringer M, Alfreider A (2021) Primer evaluation and development of a droplet digital PCR protocol targeting amoA genes for the quantification of Comammox in lakes. Sci Rep 11:2982. https://doi.org/10.1038/s41598-021-82613-6

Article  Google Scholar 

Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ (2020) Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol 18:241–256. https://doi.org/10.1038/s41579-020-0323-1

Article  Google Scholar 

Hooper AB, Terry KR (1979) Hydroxylamine Oxidoreductase of Nitrosomonas. Biochimica et Biophysica Acta (BBA) - Enzymol 571(1):12–20. https://doi.org/10.1016/0005-2744(79)90220-1

Article  Google Scholar 

Hu H-W, He J-Z (2017) Comammox—a newly discovered nitrification process in the terrestrial nitrogen cycle. J Soils Sediments 17:2709–2717. https://doi.org/10.1007/s11368-017-1851-9

Article  Google Scholar 

Huang Z, Gedalanga PB, Asvapathanagul P, Olson BH (2010) Influence of physicochemical and operational parameters on Nitrobacter and Nitrospira communities in an aerobic activated sludge bioreactor. Water Res 44:4351–4358. https://doi.org/10.1016/j.watres.2010.05.037

Article  Google Scholar 

Huys GR, Raes J (2018) Go with the flow or solitary confinement: a look inside the single-cell toolbox for isolation of rare and uncultured microbes. Curr Opin Microbiol 44:1–8. https://doi.org/10.1016/j.mib.2018.05.002

Article 

留言 (0)

沒有登入
gif