Li, X. V. et al. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 603, 672–678 (2022).
CAS PubMed PubMed Central Article Google Scholar
Forster, S. C. et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol. 37, 186–192 (2019).
CAS PubMed PubMed Central Article Google Scholar
Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).
CAS PubMed PubMed Central Article Google Scholar
Beghini, F. et al. Large-scale comparative metagenomics of Blastocystis, a common member of the human gut microbiome. ISME J. 11, 2848–2863 (2017).
PubMed PubMed Central Article Google Scholar
Karo-Atar, D. et al. Helminth-induced reprogramming of the stem cell compartment inhibits type 2 immunity. J. Exp. Med. 219, e20212311 (2022).
Zaiss, M. M. et al. The Intestinal Microbiota Contributes to the Ability of Helminths to Modulate Allergic Inflammation. Immunity 43, 998–1010 (2015).
CAS PubMed PubMed Central Article Google Scholar
Groussin, M. et al. Elevated rates of horizontal gene transfer in the industrialized human microbiome. Cell 184, 2053–2067.e18 (2021).
CAS PubMed Article Google Scholar
Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 1, 1 (2019).
Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).
Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).
CAS PubMed PubMed Central Article Google Scholar
Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature 493, 45–50 (2012).
CAS PubMed PubMed Central Article Google Scholar
Podlesny, D. et al. Metagenomic strain detection with SameStr: identification of a persisting core gut microbiota transferable by fecal transplantation. Microbiome 10, 1–15 (2022).
De Filippis, F. et al. Distinct Genetic and Functional Traits of Human Intestinal Prevotella copri Strains Are Associated with Different Habitual Diets. Cell Host Microbe 25, 444–453.e3 (2019).
Thomas, A. M. & Segata, N. Multiple levels of the unknown in microbiome research. BMC Biol. 17–20 (2019).
Hitch, T. C. A. et al. Recent advances in culture-based gut microbiome research. Int. J. Med. Microbiol. 311, 151485 (2021).
Blaser, M. J. et al. Lessons learned from the prenatal microbiome controversy. Microbiome 9, 1–7 (2021).
Walter, J. & Hornef, M. W. A philosophical perspective on the prenatal in utero microbiome debate. Microbiome 9, 1–9 (2021).
de Goffau, M. C. et al. Human placenta has no microbiome but can contain potential pathogens. Nature 572, 329–334 (2019).
PubMed PubMed Central Article Google Scholar
De Agüero, M. G. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).
Nuriel-Ohayon, M. et al. Progesterone Increases Bifidobacterium Relative Abundance during Late Pregnancy. Cell Rep. 27, 730–736.e3 (2019).
CAS PubMed Article Google Scholar
Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).
CAS PubMed PubMed Central Article Google Scholar
Mitchell, C. M. et al. Delivery Mode Affects Stability of Early Infant Gut Microbiota. Cell Rep. Med. 1, 100156 (2020).
CAS PubMed PubMed Central Article Google Scholar
Lawson, M. A. E. et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. https://doi.org/10.1038/s41396-019-0553-2 (2019).
Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).
CAS PubMed PubMed Central Article Google Scholar
Laursen, M. F., Bahl, M. I., Michaelsen, K. F. & Licht, T. R. First foods and gut microbes. Front. Microbiol. 8, 1–8 (2017).
Costea, P. I. et al. Enterotypes in the landscape of gut microbial community composition. Nat. Microbiol. 3, 8–16 (2017).
PubMed PubMed Central Article Google Scholar
Hitch, T. C. A. et al. A taxonomic note on the genus Prevotella: Description of four novel genera and emended description of the genera Hallella and Xylanibacter. Syst. Appl. Microbiol. 45, 126354 (2022).
Cheng, M. & Ning, K. Stereotypes About Enterotype: the Old and New Ideas. Genomics, Proteom. Bioinforma. 17, 4–12 (2019).
Knights, D. et al. Rethinking enterotypes. Cell Host Microbe 16, 433–437 (2014).
CAS PubMed PubMed Central Article Google Scholar
Bunesova, V., Lacroix, C. & Schwab, C. Mucin Cross-Feeding of Infant Bifidobacteria and Eubacterium hallii. Microb. Ecol. 75, 228–238 (2018).
CAS PubMed Article Google Scholar
Laursen, M. F., Bahl, M. I. & Licht, T. R. Settlers of our inner surface-factors shaping the gut microbiota from birth to toddlerhood. FEMS Microbiol. Rev. 45, 1–14 (2021).
Bourriaud, C. et al. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J. Appl. Microbiol 99, 201–212 (2005).
CAS PubMed Article Google Scholar
Robertson, R. C., Manges, A. R., Finlay, B. B. & Prendergast, A. J. The Human Microbiome and Child Growth – First 1000 Days and Beyond. Trends Microbiol 27, 131–147 (2019).
CAS PubMed Article Google Scholar
Pham, V. T., Lacroix, C., Braegger, C. P. & Chassard, C. Lactate-utilizing community is associated with gut microbiota dysbiosis in colicky infants. Sci. Rep. 7, 1–13 (2017).
Fischbach, M. A. & Sonnenburg, J. L. Eating for two: How metabolism establishes interspecies interactions in the gut. Cell Host Microbe 10, 336–347 (2011).
CAS PubMed PubMed Central Article Google Scholar
Osbelt, L. et al. Klebsiella oxytoca causes colonization resistance against multidrug-resistant K. pneumoniae in the gut via cooperative carbohydrate competition. Cell Host Microbe 29, 1663–1679.e7 (2021).
CAS PubMed Article Google Scholar
Eberl, C. et al. E. coli enhance colonization resistance against Salmonella Typhimurium by competing for galactitol, a context-dependent limiting carbon source. Cell Host Microbe 29, 1680–1692.e7 (2021).
CAS PubMed Article Google Scholar
Stearns, J. C. et al. Bacterial biogeography of the human digestive tract. Sci. Rep. 1, 1–9 (2011).
Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2015).
PubMed PubMed Central Article Google Scholar
Zoetendal, E. G. et al. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6, 1415–1426 (2012).
CAS PubMed PubMed Central Article Google Scholar
Barlow, J. T. et al. Quantitative sequencing clarifies the role of disruptor taxa, oral microbiota, and strict anaerobes in the human small-intestine microbiome. Microbiome 9, 1–17 (2021).
Ryan, F. J. et al. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat. Commun. 11, 1–12 (2020).
Yang, M. et al. Mucosal-Associated Microbiota Other Than Luminal Microbiota Has a Close Relationship With Diarrhea-Predominant Irritable Bowel Syndrome. Front. Cell. Infect. Microbiol. 10, 1–12 (2020).
Schroeder, B. O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. 7, 3–12 (2019).
Johansson, M. E. V., Sjövall, H. & Hansson, G. C. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10, 352–361 (2013).
CAS PubMed PubMed Central Article Google Scholar
Kayama, H., Okumura, R. & Takeda, K. Interaction between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu. Rev. Immunol. 38, 23–48 (2020).
CAS PubMed Article Google Scholar
Liu, H. Y. et al. Distinct B cell subsets in Peyer’s patches convey probiotic effects by Limosilactobacillus reuteri. Microbiome 9, 198 (2021).
留言 (0)