Cell competition in development, homeostasis and cancer

Morata, G. & Ripoll, P. Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev. Biol. https://doi.org/10.1016/0012-1606(75)90330-9 (1975).

Article  PubMed  Google Scholar 

Moreno, E., Basler, K. & Morata, G. Cells compete for decapentaplegic survival factor to prevent apoptosis in Drosophila wing development. Nature 416, 755–759 (2002).

CAS  PubMed  Google Scholar 

Schultz, J. The minute reaction in the development of Drosophila melanogaster. Genetics 14, 366–419 (1929).

CAS  PubMed  PubMed Central  Google Scholar 

Moreno, E. & Basler, K. dMyc transforms cells into super-competitors. Cell https://doi.org/10.1016/S0092-8674(04)00262-4 (2004).

Article  PubMed  Google Scholar 

de la Cova, C. et al. Drosophila Myc regulates organ size by inducing cell competition. Cell 117, 107–116 (2004).

PubMed  Google Scholar 

Kim, W. & Jain, R. Picking winners and losers: cell competition in tissue development and homeostasis. Trends Genet. 36, 490–498 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Baker, N. E. Emerging mechanisms of cell competition. Nat. Rev. Genet. 21, 683–697 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Parker, T. M. et al. Cell competition in intratumoral and tumor microenvironment interactions. EMBO J. https://doi.org/10.15252/embj.2020107271 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Vishwakarma, M. & Piddini, E. Outcompeting cancer. Nat. Rev. Cancer 20, 187–198 (2020).

CAS  PubMed  Google Scholar 

Simons, B. D. & Clevers, H. Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145, 851–862 (2011).

CAS  PubMed  Google Scholar 

Vermeulen, L. & Snippert, H. J. Stem cell dynamics in homeostasis and cancer of the intestine. Nat. Rev. Cancer 14, 468–480 (2014).

CAS  PubMed  Google Scholar 

Klein, A. M. & Simons, B. D. Universal patterns of stem cell fate in cycling adult tissues. Development 138, 3103–3111 (2011).

CAS  PubMed  Google Scholar 

Clavería, C., Giovinazzo, G., Sierra, R. & Torres, M. Myc-driven endogenous cell competition in the early mammalian embryo. Nature 500, 39–44 (2013). This work provides the first evidence for mammalian supercompetition and demonstrates how stochastic heterogeneity in gene expression can result in temporal fitness differences that drive active elimination.

PubMed  Google Scholar 

Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Wennekamp, S., Mesecke, S., Nédélec, F. & Hiiragi, T. A self-organization framework for symmetry breaking in the mammalian embryo. Nat. Rev. Mol. Cell Biol. 14, 454–461 (2013).

CAS  Google Scholar 

Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983).

Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & Van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002).

CAS  PubMed  Google Scholar 

Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

CAS  PubMed  Google Scholar 

De Navascués, J. et al. Drosophila midgut homeostasis involves neutral competition between symmetrically dividing intestinal stem cells. EMBO J. 31, 2473–2485 (2012).

PubMed  PubMed Central  Google Scholar 

Amoyel, M., Simons, B. D. & Bach, E. A. Neutral competition of stem cells is skewed by proliferative changes downstream of Hh and Hpo. EMBO J. 33, 2295–2313 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Lopez-Garcia, C., Klein, A. M., Simons, B. D. & Winton, D. J. Intestinal stem cell replacement follows a pattern of neutral drift. Science 330, 822–825 (2010).

CAS  PubMed  Google Scholar 

Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

CAS  PubMed  Google Scholar 

Doupé, D. P. et al. A single progenitor population switches behavior to maintain and repair esophageal epithelium. Science 337, 1091–1093 (2012).

PubMed  PubMed Central  Google Scholar 

Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 (2007).

CAS  PubMed  Google Scholar 

Scheele, C. L. G. J. et al. Identity and dynamics of mammary stem cells during branching morphogenesis. Nature 542, 313–317 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Bailey, N. T. J. The elements of stochastic processes with applications to the natural sciences (Wiley, 1966).

Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Ritsma, L. et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 362–365 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Vermeulen, L. et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science 342, 995–998 (2013).

CAS  PubMed  Google Scholar 

Snippert, H. J., Schepers, A. G., Van Es, J. H., Simons, B. D. & Clevers, H. Biased competition between Lgr5 intestinal stem cells driven by oncogenic mutation induces clonal expansion. EMBO Rep. 15, 62–69 (2014).

CAS  PubMed  Google Scholar 

Krotenberg Garcia, A. et al. Active elimination of intestinal cells drives oncogenic growth in organoids. Cell Rep. 36, 109307 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Eichenlaub, T., Cohen, S. M. & Herranz, H. Cell competition drives the formation of metastatic tumors in a drosophila model of epithelial tumor formation. Curr. Biol. 26, 419–427 (2016).

CAS  PubMed  Google Scholar 

Ohsawa, S. et al. Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev. Cell 20, 315–328 (2011).

CAS  PubMed  Google Scholar 

Li, W. & Baker, N. E. Engulfment is required for cell competition. Cell 129, 1215–1225 (2007).

CAS  PubMed  Google Scholar 

Ellis, S. J. et al. Distinct modes of cell competition shape mammalian tissue morphogenesis. Nature https://doi.org/10.1038/s41586-019-1199-y (2019). This work provides some of the first evidence that the mode of competition within a tissue can change on the basis of an organisms life stage.

Article  PubMed  PubMed Central  Google Scholar 

Jin, Z. et al. Differentiation-defective stem cells outcompete normal stem cells for niche occupancy in the Drosophila ovary. Cell Stem Cell https://doi.org/10.1016/j.stem.2007.10.021 (2008).

Article  PubMed  PubMed Central  Google Scholar 

van Neerven, S. M. et al. Apc-mutant cells act as supercompetitors in intestinal tumour initiation. Nature 594, 436–441 (2021).

PubMed  Google Scholar 

Flanagan, D. J. et al. NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature 594, 430–435 (2021).

CAS  PubMed  Google Scholar 

Sun, Q. et al. Competition between human cells by entosis. Cell Res. 24, 1299–1310 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Hamann, J. C. et al. Entosis is induced by glucose starvation. Cell Rep. 20, 201–210 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Ayukawa, S. et al. Epithelial cells remove precancerous cells by cell competition via MHC class I–LILRB3 interaction. Nat. Immunol. 22, 1391–1402 (2021).

CAS  PubMed  Google Scholar 

Wagstaff, L. et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat. Commun. 7, 11373 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Hill, W. et al. EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Curr. Biol. 31, 2550–2560.e5 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Porazinski, S. et al. EphA2 drives the segregation of Ras-transformed epithelial cells from normal neighbors. Curr. Biol. 26, 3220–3229 (2016).

CAS  PubMed  Google Scholar 

Shraiman, B. I. Mechanical feedback as a possible regulator of tissue growth. Proc. Natl Acad. Sci. USA 102, 3318–3323 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

CAS  PubMed 

留言 (0)

沒有登入
gif