Trained immunity in type 2 immune responses

Netea, M. G., Quintin, J. & Meer, J. W. M. van der Trained immunity: a memory for innate host defense. Cell Host Microbe 9, 355–361 (2011).

CAS  PubMed  Google Scholar 

Kaufmann, E. et al. BCG vaccination provides protection against IAV but not SARS-CoV-2. Cell Rep. 38, 110502 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Garly, M.-L. et al. BCG scar and positive tuberculin reaction associated with reduced child mortality in West Africa. A non-specific beneficial effect of BCG? Vaccine 21, 2782–2790 (2003).

PubMed  Google Scholar 

Puffelen, J. Hvan et al. Trained immunity as a molecular mechanism for BCG immunotherapy in bladder cancer. Nat. Rev. Urol. 17, 513–525 (2020).

PubMed  Google Scholar 

Buffen, K. et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog. 10, e1004485 (2014).

PubMed  PubMed Central  Google Scholar 

Quintin, J. et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12, 223–232 (2012).

CAS  PubMed  Google Scholar 

Saeed, S. et al. Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345, 1251086 (2014).

PubMed  PubMed Central  Google Scholar 

Cheng, S.-C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

PubMed  PubMed Central  Google Scholar 

Cirovic, B. et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host Microbe 28, 322–334.e5 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Foley, B. et al. Human cytomegalovirus (CMV)-induced memory-like NKG2C(+) NK cells are transplantable and expand in vivo in response to recipient CMV antigen. J. Immunol. 189, 5082–5088 (2012).

CAS  PubMed  Google Scholar 

Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Mitroulis, I. et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell 172, 147–161.e12 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560, 649–654 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Ordovas-Montanes, J., Beyaz, S., Rakoff-Nahoum, S. & Shalek, A. K. Distribution and storage of inflammatory memory in barrier tissues. Nat. Rev. Immunol. 20, 308–320 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Lechner, A. et al. Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma. J. Allergy Clin. Immunol. S0091-6749, 02741–0274 (2021).

Google Scholar 

Schuijs, M. J. et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science 349, 1106–1110 (2015).

CAS  PubMed  Google Scholar 

Katzmarski, N. et al. Transmission of trained immunity and heterologous resistance to infections across generations. Nat. Immunol. 22, 1382–1390 (2021).

CAS  PubMed  Google Scholar 

Kaufmann, E. et al. Lack of evidence for intergenerational inheritance of immune resistance to infections. Nat. Immunol. 23, 203–207 (2022).

CAS  PubMed  Google Scholar 

Hong, M. et al. Trained immunity in newborn infants of HBV-infected mothers. Nat. Commun. 6, 6588 (2015).

CAS  PubMed  Google Scholar 

Gee, S. et al. The legacy of maternal SARS-CoV-2 infection on the immunology of the neonate. Nat. Immunol. 22, 1490–1502 (2021).

CAS  PubMed  Google Scholar 

Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002 (2021).

CAS  PubMed  Google Scholar 

Lacorcia, M. & Prazeres da Costa, C. U. Maternal Schistosomiasis: immunomodulatory effects with lasting impact on allergy and vaccine responses. Front Immunol. 9, 2960 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

West, C. E. et al. The gut microbiota and inflammatory noncommunicable diseases: Associations and potentials for gut microbiota therapies. J. Allergy Clin. Immunol. 135, 3–13 (2015).

PubMed  Google Scholar 

Juhn, Y. J. et al. Increased risk of serious pneumococcal disease in patients with asthma. J. Allergy Clin. Immunol. 122, 719–723 (2008).

PubMed  PubMed Central  Google Scholar 

Resende, Co,T., Hirsch, C. S., Toossi, Z., Dietze, R. & Ribeiro-Rodrigues, R. Intestinal helminth co-infection has a negative impact on both anti-Mycobacterium tuberculosis immunity and clinical response to tuberculosis therapy. Clin. Exp. Immunol. 147, 45–52 (2007).

Google Scholar 

Chen, Y. et al. Association of previous schistosome infection with diabetes and metabolic syndrome: a cross-sectional study in rural China. J. Clin. Endocrinol. Metab. 98, E283–E287 (2013).

CAS  PubMed  Google Scholar 

O’Shea, M. K. et al. Human Hookworm infection enhances mycobacterial growth inhibition and associates with reduced risk of Tuberculosis Infection. Front Immunol. 9, 2893 (2018).

PubMed  PubMed Central  Google Scholar 

Tracey, E. F., McDermott, R. A. & McDonald, M. I. Do worms protect against the metabolic syndrome? A systematic review and meta-analysis. Diabetes Res. Clin. Pr. 120, 209–220 (2016).

Google Scholar 

Cunningham, K. T., Finlay, C. M. & Mills, K. H. G. Helminth Imprinting of Hematopoietic stem cells sustains anti-inflammatory trained innate immunity that Attenuates Autoimmune Disease. J. Immunol. 206, 1618–1630 (2021).

CAS  PubMed  Google Scholar 

Yasuda, K., Adachi, T., Koida, A. & Nakanishi, K. Nematode-infected mice acquire resistance to subsequent infection with unrelated Nematode by inducing highly responsive Group 2 Innate Lymphoid Cells in the Lung. Front Immunol. 9, 2132 (2018).

PubMed  PubMed Central  Google Scholar 

Hussain, S.-R. A. et al. Atopic Neutrophils Prevent Postviral Airway Disease. J. Immunol. 207, 2589–2597 (2021).

CAS  PubMed  Google Scholar 

Jakiela, B. et al. Remodeling of bronchial epithelium caused by asthmatic inflammation affects its response to rhinovirus infection. Sci. Rep. 11, 12821 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Habibzay, M., Saldana, J. I., Goulding, J., Lloyd, C. M. & Hussell, T. Altered regulation of Toll-like receptor responses impairs antibacterial immunity in the allergic lung. Mucosal Immunol. 5, 524–534 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Gazzinelli-Guimaraes, P. H. et al. Allergen presensitization drives an eosinophil-dependent arrest in lung-specific helminth development. J. Clin. Invest. 129, 3686–3701 (2019).

PubMed  PubMed Central  Google Scholar 

Moltke, J., von, Ji, M., Liang, H.-E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016).

Google Scholar 

Ualiyeva, S. et al. Tuft cell-produced cysteinyl leukotrienes and IL-25 synergistically initiate lung type 2 inflammation. Sci. Immunol. 6, eabj0474 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Toki, S. et al. TSLP and IL-33 reciprocally promote each other’s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy 75, 1606–1617 (2020).

CAS  PubMed  Google Scholar 

Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Turner, J. D. et al. Interleukin-4 activated macrophages mediate immunity to filarial helminth infection by sustaining CCR3-dependent eosinophilia. PLoS Pathog. 14, e1006949 (2018).

PubMed  PubMed Central  Google Scholar 

Anthony, R. M. et al. Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat. Med. 12, 955–960 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Chen, F. et al. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat. Med. 18, 260–266 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Ehrens, A. et al. Eosinophils and Neutrophils eliminate migrating Strongyloides ratti Larvae at the site of infection in the context of extracellular DNA trap formation. Front Immunol. 12, 715766 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Bouchery, T. et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat. Commun. 6, 6970 (2015).

CAS  PubMed  Google Scholar 

Chen, F. et al. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 15, 938–946 (2014).

CAS  PubMed 

留言 (0)

沒有登入
gif