O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy

Abdel-Wahab O, Patel J, Levine RL. Clinical implications of novel mutations in epigenetic modifiers in AML. Hematol Oncol Clin North Am. 2011;25(6):1119–33.

PubMed  Article  Google Scholar 

Akella NM, Le Minh G, Ciraku L, et al. O-GlcNAc transferase regulates cancer stem-like potential of breast cancer cells. Mol Cancer Res. 2020;18(4):585–98.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Akimoto Y, Miura Y, Toda T, et al. Morphological changes in diabetic kidney are associated with increased O-GlcNAcylation of cytoskeletal proteins including alpha-actinin 4. Clin Proteomics. 2011;8(1):15.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Akimov V, Barrio-Hernandez I, Hansen S, et al. UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat Struct Mol Biol. 2018;25(7):631–40.

CAS  PubMed  Article  Google Scholar 

Ali A, Kim SH, Kim MJ, et al. O-GlcNAcylation of NF-kappaB promotes lung metastasis of cervical cancer cells via upregulation of CXCR4 expression. Mol Cells. 2017;40(7):476–84.

CAS  PubMed  PubMed Central  Google Scholar 

Alonso J, Schimpl M, van Aalten DM. O-GlcNAcase: promiscuous hexosaminidase or key regulator of O-GlcNAc signaling? J Biol Chem. 2014;289(50):34433–9.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Arnold CS, Johnson GV, Cole RN, et al. The microtubule-associated protein tau is extensively modified with O-linked N-acetylglucosamine. J Biol Chem. 1996;271(46):28741–4.

CAS  PubMed  Article  Google Scholar 

Asthana A, Ramakrishnan P, Vicioso Y, Zhang K, Parameswaran R. Hexosamine biosynthetic pathway inhibition leads to AML cell differentiation and cell death. Mol Cancer Ther. 2018;17(10):2226–37.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Banerjee S, Sangwan V, McGinn O, et al. Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1. J Biol Chem. 2013;288(47):33927–38.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bejar R, Levine R, Ebert BL. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J Clin Oncol. 2011;29(5):504–15.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bertram L, Blacker D, Mullin K, et al. Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science. 2000;290(5500):2302–3.

CAS  PubMed  Article  Google Scholar 

Blum A, Wang P, Zenklusen JC. SnapShot: TCGA-analyzed tumors. Cell. 2018;173(2):530.

CAS  PubMed  Article  Google Scholar 

Bond MR, Hanover JA. A little sugar goes a long way: the cell biology of O-GlcNAc. J Cell Biol. 2015;208(7):869–80.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Borodkin VS, Schimpl M, Gundogdu M, et al. Bisubstrate UDP-peptide conjugates as human O-GlcNAc transferase inhibitors. Biochem J. 2014;457(3):497–502.

CAS  PubMed  Article  Google Scholar 

Bullen JW, Balsbaugh JL, Chanda D, et al. Cross-talk between two essential nutrient-sensitive enzymes: O-GlcNAc transferase (OGT) and AMP-activated protein kinase (AMPK). J Biol Chem. 2014;289(15):10592–606.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Butkinaree C, Cheung WD, Park S, et al. Characterization of beta-N-acetylglucosaminidase cleavage by caspase-3 during apoptosis. J Biol Chem. 2008;283(35):23557–66.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Caldwell SA, Jackson SR, Shahriari KS, et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene. 2010;29(19):2831–42.

CAS  PubMed  Article  Google Scholar 

Cancer Cell Line Encyclopedia Consortium, Genomics of Drug Sensitivity in Cancer Consortium. Pharmacogenomic agreement between two cancer cell line data sets. Nature. 2015;528(7580):84–7.

Article  CAS  Google Scholar 

Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

PubMed  Article  Google Scholar 

Cervoni L, Turano C, Ferraro A, et al. Glycosylation of RNA polymerase II from wheat germ. Febs Lett. 1997;417(2):227–30.

CAS  PubMed  Article  Google Scholar 

Champattanachai V, Netsirisawan P, Chaiyawat P, et al. Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer. Proteomics. 2013;13(14):2088–99.

CAS  PubMed  Article  Google Scholar 

Chatham JC, Not LG, Fulop N, Marchase RB. Hexosamine biosynthesis and protein O-glycosylation: the first line of defense against stress, ischemia, and trauma. Shock. 2008;29(4):431–40.

CAS  PubMed  Article  Google Scholar 

Chen Y, Liu J, Zhang W, et al. O-GlcNAcylation enhances NUSAP1 stability and promotes bladder cancer aggressiveness. Onco Targets Ther. 2021;14:445–54.

PubMed  PubMed Central  Article  Google Scholar 

Chen L, Li Y, Song Z, et al. O-GlcNAcylation promotes cerebellum development and medulloblastoma oncogenesis via SHH signaling. Proc Natl Acad Sci USA. 2022;119(34): e2202821119.

PubMed  PubMed Central  Article  Google Scholar 

Cheng S, Ren J, Su L, et al. O-GlcNAcylation of the signaling scaffold protein, GNB2L1 promotes its degradation and increases metastasis of gastric tumours. Biochem Biophys Res Commun. 2016a;478(4):1497–502.

CAS  PubMed  Article  Google Scholar 

Cheng YU, Li H, Li J, et al. O-GlcNAcylation enhances anaplastic thyroid carcinoma malignancy. Oncol Lett. 2016b;12(1):572–8.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cheung WD, Hart GW. AMP-activated protein kinase and p38 MAPK activate O-GlcNAcylation of neuronal proteins during glucose deprivation. J Biol Chem. 2008;283(19):13009–20.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ciraku L, Bacigalupa ZA, Ju J, et al. O-GlcNAc transferase regulates glioblastoma acetate metabolism via regulation of CDK5-dependent ACSS2 phosphorylation. Oncogene. 2022;41(14):2122–36.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Clark RJ, McDonough PM, Swanson E, et al. Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem. 2003;278(45):44230–7.

CAS  PubMed  Article  Google Scholar 

Cohen P. The regulation of protein function by multisite phosphorylation—a 25 year update. Trends Biochem Sci. 2000;25(12):596–601.

CAS  PubMed  Article  Google Scholar 

Davis LI, Blobel G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc Natl Acad Sci USA. 1987;84(21):7552–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

de Queiroz RM, Madan R, Chien J, Dias WB, Slawson C. Changes in O-linked N-acetylglucosamine (O-GlcNAc) homeostasis activate the p53 pathway in ovarian cancer cells. J Biol Chem. 2016;291(36):18897–914.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Degrell P, Cseh J, Mohas M, et al. Evidence of O-linked N-acetylglucosamine in diabetic nephropathy. Life Sci. 2009;84(13–14):389–93.

CAS  PubMed  Article  Google Scholar 

Dennis JW, Lau KS, Demetriou M, Nabi IR. Adaptive regulation at the cell surface by N-glycosylation. Traffic. 2009;10(11):1569–78.

CAS  PubMed  Article  Google Scholar 

Dephoure N, Zhou C, Villen J, et al. A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci USA. 2008;105(31):10762–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ding M, Vandre DD. High molecular weight microtubule-associated proteins contain O-linked-N-acetylglucosamine. J Biol Chem. 1996;271(21):12555–61.

CAS  PubMed  Article  Google Scholar 

Dorfmueller HC, Borodkin VS, Blair DE, et al. Substrate and product analogues as human O-GlcNAc transferase inhibitors. Amino Acids. 2011;40(3):781–92.

CAS  PubMed  Article  Google Scholar 

留言 (0)

沒有登入
gif