Study protocol: Effects of active versus passive recharge burst spinal cord stimulation on pain experience in persistent spinal pain syndrome type 2: a multicentre randomized trial (BURST-RAP study)

Taylor RS. Spinal cord stimulation in complex regional pain syndrome and refractory neuropathic back and leg pain/failed back surgery syndrome: results of a systematic review and meta-analysis. J Pain Symptom Manage. 2006;31(4 SUPPL) [cited 2020 Oct 9]. Available from: https://pubmed.ncbi.nlm.nih.gov/16647590/.

Geurts JW, Joosten EA, van Kleef M. Current status and future perspectives of spinal cord stimulation in treatment of chronic pain. Pain. 2017;158(5):771–4. https://doi.org/10.1097/j.pain.0000000000000847

Christelis N, Simpson B, Russo M, Stanton-Hicks M, Barolat G, Thomson S, et al. Persistent spinal pain syndrome: a proposal for failed back surgery syndrome and ICD-11. Pain Med. 2021;22(4):807–18 [cited 2021 Sep 10]. Available from: https://pubmed.ncbi.nlm.nih.gov/33779730/.

Article  Google Scholar 

Falowski SM, Moore GA, Cornidez EG, Hutcheson JK, Candido K, Peña I, et al. Improved psychosocial and functional outcomes and reduced opioid usage following burst spinal cord stimulation. Neuromodulation. 2020;24(3):581–90. https://doi.org/10.1111/ner.13226

Hamm-Faber TE, Gültuna I, van Gorp EJ, Aukes H. High-dose spinal cord stimulation for treatment of chronic low back pain and leg pain in patients with FBSS, 12-month results: a prospective pilot study. Neuromodulation. 2020;23(1):118–25 [cited 2021 Aug 2]; Available from: https://pubmed.ncbi.nlm.nih.gov/30860645/.

Article  Google Scholar 

Kinfe TM, Pintea B, Link C, Roeske S, Güresir E, Güresir Á, et al. High frequency (10 kHz) or burst spinal cord stimulation in failed back surgery syndrome patients with predominant back pain: preliminary data from a prospective observational study. Neuromodulation: Technology at the Neural. Interface. 2016;19(3):268–75.

Google Scholar 

Demartini L, Terranova G, Innamorato MA, Dario A, Sofia M, Angelini C, et al. Comparison of tonic vs. burst spinal cord stimulation during trial period. Neuromodulation. 2019;22(3):327–32.

Article  Google Scholar 

Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, et al. The effects of spinal cord stimulation in neuropathic pain are sustained: a 24-month follow-up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation. Neurosurgery. 2008;63(4):762–8 [cited 2022 Jun 1]. Available from: https://journals.lww.com/neurosurgery/Fulltext/2008/10000/THE_EFFECTS_OF_SPINAL_CORD_STIMULATION_IN.27.aspx.

Article  Google Scholar 

North RB, Kidd DH, Farrokhi F, Piantadosi SA. Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial. Neurosurgery. 2005;56(1):98–106 [cited 2022 Jun 1]. Available from: https://pubmed.ncbi.nlm.nih.gov/15617591/.

Article  Google Scholar 

Edelbroek CTM, Kallewaard JW, D’eer I, Kurt E, Nijhuis HJA, Terwiel CTM, et al. Dutch consensus paper: A consensus view on the place of neurostimulation within the treatment arsenal of five reimbursed indications for neurostimulation in The Netherlands. Neuromodulation. 2022; [cited 2022 Jun 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/35562262/.

Taylor RS, Taylor RJ. The economic impact of failed back surgery syndrome. British. J Pain. 2012;6(4):174 [cited 2022 Jun 1]. Available from: /pmc/articles/PMC4590097/.

Article  Google Scholar 

Grande GR, Meucci RD. Prevalence of chronic low back pain: systematic review. Rev Saúde Pública. 2015;49:73.

Google Scholar 

Mehra M, Hill K, Nicholl D, Schadrack J. The burden of chronic low back pain with and without a neuropathic component: a healthcare resource use and cost analysis. J Med Econ. 2012;15(2):245–52 Available from: https://www.tandfonline.com/action/journalInformation?journalCode=ijme20.

Article  Google Scholar 

Itz CJ, Ramaekers BLT, van Kleef M, Dirksen CD. Medical specialists care and hospital costs for low back pain in the Netherlands. Eur J Pain (United Kingdom). 2017;21(4):705–15. https://doi.org/10.1002/ejp.974.

Frymoyer JW, Cats-Baril WL. An overview of the incidences and costs of low back pain. Orthop Clin North Am. 1991;22(2):263–71.

Deyo RA, Weinstein JN. Low back pain. N Engl J Med. 2001;344(5):363–70 Available from: http://www.ncbi.nlm.nih.gov/pubmed/11172169.

CAS  Article  Google Scholar 

Deer T, Slavin K v, Amirdelfan K, North RB, Burton AW, Yearwood TL, et al. Success using neuromodulation with BURST (SUNBURST) study: results from a prospective, randomized controlled trial using a novel burst waveform. Neuromodulation: Technology at the Neural. Interface. 2018;21(1):56–66 [cited 2020 Apr 17]. Available from: http://doi.wiley.com/10.1111/ner.12698.

Google Scholar 

Courtney P, Espinet A, Mitchell B, Russo M, Muir A, Verrills P, et al. Improved pain relief with burst spinal cord stimulation for two weeks in patients using tonic stimulation: Results from a small clinical study. Neuromodulation. 2015;18(5):361–6. https://doi.org/10.1111/ner.12294.

Joosten EA, Franken G. Spinal cord stimulation in chronic neuropathic pain: mechanisms of action, new locations, new paradigms. Pain. 2020;161:S104–13.

Article  Google Scholar 

de Ridder D, Vanneste S, Plazier M, van der Loo E, Menovsky T. Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery. 2010;66(5):986–90 [cited 2020 Apr 22]. Available from: https://academic.oup.com/neurosurgery/article/66/5/986/2556656.

Article  Google Scholar 

De Ridder D, Vanneste S, Plazier M, Vancamp T. Mimicking the brain: evaluation of St Jude Medical’s prodigy chronic pain system with burst technology. Expert Rev Med Devices. 2015;12(2):143–50. https://doi.org/10.1586/17434440.2015.985652.

Meuwissen KPV, Gu JW, Zhang TC, Joosten EAJ. Burst spinal cord stimulation in peripherally injured chronic neuropathic rats: a delayed effect. Pain Pract. 2018;18(8):988–96 [cited 2019 Apr 2]. Available from: http://doi.wiley.com/10.1111/papr.12701.

Article  Google Scholar 

Chakravarthy K, Fishman MA, Zuidema X, Hunter CW, Levy R. Mechanism of action in burst spinal cord stimulation: review and recent advances. Pain Med (United States). 2019;20:S13–22.

Article  Google Scholar 

Kirketeig T, Schultheis C, Zuidema X, Hunter CW, Deer T. Burst spinal cord stimulation: a clinical review. Pain Med (United States). 2019;20:S31–40.

Article  Google Scholar 

de Ridder D, Vancamp T, Falowski SM, Vanneste S. All bursts are equal, but some are more equal (to burst firing): burstDR stimulation versus Boston burst stimulation. Expert Rev Med Devices. 2020;17(4):289–95 Available from: https://www.tandfonline.com/doi/full/10.1080/17434440.2020.1736560.

Article  Google Scholar 

Meuwissen KPV, van der Toorn A, Gu JW, Zhang TC, Dijkhuizen RM, Joosten EAJ. Active recharge burst and tonic spinal cord stimulation engage different supraspinal mechanisms: a functional magnetic resonance imaging study in peripherally injured chronic neuropathic rats. Pain Pract. 2020:papr.12879 [cited 2020 Mar 24]. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/papr.12879.

Falowski SM. Fundamental differences in burst stimulation waveform design: eliminating confusion in the marketplace. Neuromodulation. 2018;21(3):320.

Article  Google Scholar 

Meuwissen KPV, Gu JW, Zhang TC, Joosten EAJ. Response to: Fundamental differences in burst stimulation waveform design: eliminating confusion in the marketplace. Neuromodulation: Technology at the Neural. Interface. 2018;21(7):721–2 [cited 2022 Jan 19]. Available from: https://onlinelibrary-wiley-com.mu.idm.oclc.org/doi/full/10.1111/ner.12857.

Google Scholar 

Gu JW, Joosten EAJ. Clarifying the Scientific Knowledge Pertaining to Burst Waveforms in Spinal Cord Stimulation. Neuromodulation. 2019;22(6):758–9.

Article  Google Scholar 

Kent AR, Weisshaar CL, Venkatesan L, Winkelstein BA. Burst & high-frequency spinal cord stimulation differentially effect spinal neuronal activity after radiculopathy. Ann Biomed Eng. 2020;48(1):112–20 [cited 2022 Jun 1]. Available from: https://link.springer.com/article/10.1007/s10439-019-02336-8.

Article  Google Scholar 

Saber M, Schwabe D, Park HJ, Tessmer J, Khan Z, Ding Y, et al. Tonic, burst, and burst-cycle spinal cord stimulation lead to differential brain activation patterns as detected by functional magnetic resonance imaging. Neuromodulation. 2022;25(1):53–63 [cited 2022 Jan 24]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35041588.

Article  Google Scholar 

de Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. Burst spinal cord stimulation for limb and back pain. World Neurosurg. 2013;80(5):642–649.e1.

Article  Google Scholar 

Hagedorn JM, Falowski SM, Blomme B, Capobianco RA, Yue JJ. Burst spinal cord stimulation can attenuate pain and its affective components in chronic pain patients with high psychological distress: results from the prospective, international TRIUMPH study. Spine J. 2022;22(3):379–88 [cited 2021 Sep 8]. Available from: https://pubmed.ncbi.nlm.nih.gov/34419628/.

Article  Google Scholar 

Yearwood T, de Ridder D, Yoo HB, Falowski S, Venkatesan L, Ting To W, et al. Comparison of neural activity in chronic pain patients during tonic and burst spinal cord stimulation using fluorodeoxyglucose positron emission tomography. Neuromodulation. 2020;23(1):56–63. https://doi.org/10.1111/ner.12960.

de Ridder D, Vanneste S. Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation. 2016;19(1):47–59. https://doi.org/10.1111/ner.12368.

Deer TR, Falowski SM, Moore GA, Hutcheson JK, Peña I, Candido K, et al. Passive Recharge Burst Spinal Cord Stimulation provides sustainable improvements in pain and psychosocial function: 2-year results from the TRIUMPH study. Spine (Phila Pa 1976). 2021;47(7):548–56. https://doi.org/10.1097/BRS.0000000000004283.

Billot M, Naiditch N, Brandet C, Lorgeoux B, Baron S, Ounajim A, et al. Comparison of conventional, burst and high-frequency spinal cord stimulation on pain relief in refractory failed back surgery syndrome patients: study protocol for a prospective randomized double-blinded cross-over trial (MULTIWAVE study). Trials. 2020;21(1) [cited 2022 Jun 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/32746899/.

Sullivan M, Bishop S, Pivik J. The pain catastrophizing scale: user manual. Psychol Assess. 1995;7(4):524–32 [cited 2020 Oct 9]. Available from: http://sullivan-painresearch.mcgill.ca/pdf/pcs/PCSManual_English.pdf%5Cn, http://psycnet.apa.org/journals/pas/7/4/524/.

Article  Google Scholar 

Chan AW, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346(jan08 15):e7586 [cited 2022 Feb 24]. Available from: https://pubmed.ncbi.nlm.nih.gov/23303884/.

Article  Google Scholar 

Roelofs J, Peters ML, McCracken L, Vlaeyen JWS. The pain vigilance and awareness questionnaire (PVAQ): further psychometric evaluation in fibromyalgia and other chronic pain syndromes. Pain. 2003;101(3):299–306 [cited 2020 Oct 9]. Available from: https://pubmed.ncbi.nlm.nih.gov/12583873/.

Article  Google Scholar 

McCracken LM. “Attention” to pain in persons with chronic pain: a behavioral approach. Behav Ther. 1997;28(2):271–84.

Article  Google Scholar 

Herrmann C. International experiences with the Hospital Anxiety and Depression Scale-a review of validation data and clinical results. J Psychosom Res. 1997;42(1):17–41.

CAS  Article  Google Scholar 

Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–70 [cited 2022 Jan 10]. Available from: https://pubmed.ncbi.nlm.nih.gov/6880820/.

CAS  Article  Google Scholar 

Devlin NJ, Brooks R. EQ-5D and the EuroQol Group: past, present and future. Appl Health Econ Health Policy. 2017;15(2):127–37 [cited 2020 Apr 28]. Available from: http://link.springer.com/10.1007/s40258-017-0310-5.

Article  Google Scholar 

Szende A, Janssen B, Cabasés J. Self-reported population health: an international perspective based on EQ-5D; 2014.

Book  Google Scholar 

Rabin R, de Charro F. EQ-5D: a measure of health status from the EuroQol Group. In: Annals of Medicine: Royal Society of Medicine Press Ltd; London, 2001. p. 337–43. 

Google Scholar 

Fairbank JCT, Pynsent PB. The oswestry disability index. Spine (Phila Pa 1976). 2000;25(22):2940–53.

CAS  Article  Google Scholar 

Perrot S, Lantéri-Minet M. Patients’ Global Impression of Change in the management of peripheral neuropathic pain: Clinical relevance and correlations in daily practice. Eur J Pain (United Kingdom). 2019;23(6):1117–28.

Google Scholar 

Freynhagen R, Baron R, Gockel U, Tölle TR. painDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr Med Res Opin. 2006;22(10):1911–20 [cited 2022 Jan 11]. Available from: https://pubmed.ncbi.nlm.nih.gov/17022849/.

Article  Google Scholar 

Freynhagen R, Tölle TR, Gockel U, Baron R, Tölle, T.R. The painDETECT project-far more than a screening tool on neuropathic pain. 2016; Available from: https://www.tandfonline.com/action/journalInformation?journalCode=icmo20

Book  Google Scholar 

Scott W, Wideman TH, Sullivan MJL. Clinically meaningful scores on pain catastrophizing before and after multidisciplinary rehabilitation: a prospective study of individuals with subacute pain after whiplash injury. Clin J Pain. 2014;30(3):183–90.

Article  Google Scholar 

留言 (0)

沒有登入
gif