Constructing a cost-efficient, high-throughput and high-quality single-molecule localization microscope for super-resolution imaging

Szymborska, A. et al. Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341, 655–658 (2013).

CAS  PubMed  Article  Google Scholar 

Salvador-Gallego, R. et al. Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J. 35, 389–401 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mund, M. et al. Systematic nanoscale analysis of endocytosis links efficient vesicle formation to patterned actin nucleation. Cell 174, 884–896.e17 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–796 (2006).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

CAS  PubMed  Article  Google Scholar 

Jungmann, R. et al. Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 11, 313–318 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Xu, K., Zhong, G. & Zhuang, X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339, 452–456 (2013).

CAS  PubMed  Article  Google Scholar 

Ries, J. et al. Superresolution imaging of amyloid fibrils with binding-activated probes. ACS Chem. Neurosci. 4, 1057–1061 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. Engl. 47, 6172–6176 (2008).

CAS  PubMed  Article  Google Scholar 

Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

CAS  PubMed  Article  Google Scholar 

van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).

PubMed  Article  CAS  Google Scholar 

Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat. Methods 8, 1027–1036 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gould, T. J., Verkhusha, V. V. & Hess, S. T. Imaging biological structures with fluorescence photoactivation localization microscopy. Nat. Protoc. 4, 291–308 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014).

CAS  PubMed  Article  Google Scholar 

Martens, K. J. A. et al. Visualisation of dCas9 target search in vivo using an open-microscopy framework. Nat. Commun. 10, 3552 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Auer, A. et al. Nanometer-scale multiplexed super-resolution imaging with an economic 3D-DNA-PAINT microscope. Chemphyschem 19, 3024–3034 (2018).

CAS  PubMed  Article  Google Scholar 

Ma, H., Fu, R., Xu, J. & Liu, Y. A simple and cost-effective setup for super-resolution localization microscopy. Sci. Rep. 7, 1542 (2017).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Diederich, B., Then, P., Jügler, A., Förster, R. & Heintzmann, R. cellSTORM—cost-effective super-resolution on a cellphone using dSTORM. PLoS One 14, e0209827 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Holm, T. et al. A blueprint for cost-efficient localization microscopy. Chemphyschem 15, 651–654 (2014).

CAS  PubMed  Article  Google Scholar 

Campbell, R. A. A., Eifert, R. W. & Turner, G. C. Openstage: a low-cost motorized microscope stage with sub-micron positioning accuracy. PLoS One 9, e88977 (2014).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Schröder, D. et al. Cost-efficient open source laser engine for microscopy. Biomed. Opt. Express 11, 609–623 (2020).

PubMed  PubMed Central  Article  Google Scholar 

Collins, J. T. et al. Robotic microscopy for everyone: the OpenFlexure microscope. Biomed. Opt. Express 11, 2447–2460 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Grant, S. D., Cairns, G. S., Wistuba, J. & Patton, B. R. Adapting the 3D-printed Openflexure microscope enables computational super-resolution imaging. F1000Res 8, 2003 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Almada, P. et al. Automating multimodal microscopy with NanoJ-Fluidics. Nat. Commun. 10, 1223 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Whiten, D. R. et al. Nanoscopic characterisation of individual endogenous protein aggregates in human neuronal cells. Chembiochem 19, 2033–2038 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sang, J. C. et al. Super-resolution imaging reveals α-synuclein seeded aggregation in SH-SY5Y cells. Commun. Biol. 4, 1–11 (2021).

Article  CAS  Google Scholar 

Sideris, D. I. et al. Soluble amyloid beta-containing aggregates are present throughout the brain at early stages of Alzheimer’s disease. Brain Commun. 3, fcab147 (2021).

Lam, J. Y. L. et al. An economic, square-shaped flat-field illumination module for TIRF-based super-resolution microscopy. Biophys. Rep. 2, 100044 (2022).

Google Scholar 

Li, H. et al. Squid: simplifying quantitative imaging platform development and deployment. Preprint at https://www.biorxiv.org/content/10.1101/2020.12.28.424613v1 (2020).

Auer, A., Strauss, M. T., Schlichthaerle, T. & Jungmann, R. Fast, background-free DNA-PAINT imaging using FRET-based probes. Nano Lett. 17, 6428–6434 (2017).

CAS  PubMed  Article  Google Scholar 

Balzarotti, F. et al. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355, 606–612 (2017).

CAS  PubMed  Article  Google Scholar 

Thevathasan, J. V. et al. Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nat. Methods 16, 1045–1053 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Schlichthaerle, T., Ganji, M., Auer, A., Kimbu Wade, O. & Jungmann, R. Bacterially derived antibody binders as small adapters for DNA-PAINT microscopy. Chembiochem 20, 1032–1038 (2019).

CAS  PubMed  Article  Google Scholar 

Nieuwenhuizen, R. P. J. et al. Measuring image resolution in optical nanoscopy. Nat. Methods 10, 557–562 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wang, Y. et al. Localization events-based sample drift correction for localization microscopy with redundant cross-correlation algorithm. Opt. Express 22, 15982–15991 (2014).

PubMed  PubMed Central  Article  Google Scholar 

Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

CAS  PubMed  Article  Google Scholar 

Jain, A., Liu, R., Xiang, Y. K. & Ha, T. Single-molecule pull-down for studying protein interactions. Nat. Protoc. 7, 445–452 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Shechtman, Y., Weiss, L. E., Backer, A. S., Sahl, S. J. & Moerner, W. E. Precise three-dimensional scan-free multiple-particle tracking over large axial ranges with tetrapod point spread functions. Nano Lett. 15, 4194–4199 (2015).

CAS  PubMed 

留言 (0)

沒有登入
gif