Anaerobic cryoEM protocols for air-sensitive nitrogenase proteins

Thamdrup, B. New pathways and processes in the global nitrogen cycle. Ann. Rev. Ecol. Evol. Syst. 43, 407–428 (2012).

Article  Google Scholar 

Thorneley, R. & Lowe, D. Molybdenum enzymes. Met. Ions Biol. 7, 221–284 (1985).

CAS  Google Scholar 

Holland, P. L. Introduction: reactivity of nitrogen from the ground to the atmosphere. Chem. Rev. 120, 4919–4920 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gallon, J. R. The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. Trends Biochem. Sci. 6, 19–23 (1981).

Article  CAS  Google Scholar 

Lowe, D. & Thorneley, R. N. The mechanism of Klebsiella pneumoniae nitrogenase action. The determination of rate constants required for the simulation of the kinetics of N2 reduction and H2 evolution. Biochem. J. 224, 895–901 (1984).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Buscagan, T. M., Kaiser, J. T. & Rees, D. C. Selenocyanate derived Se-incorporation into the nitrogenase Fe protein cluster. eLife 11, e79311 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Henthorn, J. T. et al. Localized electronic structure of nitrogenase FeMoco revealed by Selenium K-edge high resolution X-ray absorption spectroscopy. J. Am. Chem. Soc. 141, 13676–13688 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Spatzal, T., Perez, K. A., Howard, J. B. & Rees, D. C. Catalysis-dependent selenium incorporation and migration in the nitrogenase active site iron-molybdenum cofactor. eLife 4, e11620 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Sippel, D. et al. A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science 359, 1484–1489 (2018).

Article  CAS  PubMed  Google Scholar 

Buscagan, T. M., Perez, K. A., Maggiolo, A. O., Rees, D. C. & Spatzal, T. Structural characterization of two CO molecules bound to the nitrogenase active site. Angew. Chem. Int. Ed. 60, 5704–5707 (2021).

Article  CAS  Google Scholar 

Spatzal, T., Perez, K. A., Einsle, O., Howard, J. B. & Rees, D. C. Ligand binding to the FeMo-cofactor: structures of CO-bound and reactivated nitrogenase. Science 345, 1620–1623 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Einsle, O. & Rees, D. C. Structural enzymology of nitrogenase enzymes. Chem. Rev. 120, 4969–5004 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nakane, T. et al. Single-particle cryo-EM at atomic resolution. Nature 587, 152–156 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yip, K. M., Fischer, N., Paknia, E., Chari, A. & Stark, H. Atomic-resolution protein structure determination by cryo-EM. Nature 587, 157–161 (2020).

Article  CAS  PubMed  Google Scholar 

Warmack, R. A. et al. Structural consequences of turnover-induced homocitrate loss in nitrogenase. Nat. Commun. 14, 1091 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rutledge, H. L., Cook, B. D., Nguyen, H. P. M., Herzik, M. A. & Tezcan, F. A. Structures of the nitrogenase complex prepared under catalytic turnover conditions. Science 377, 865–869 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warmack, R. A. & Rees, D. C. Nitrogenase beyond the resting state: a structural perspective. Molecules 28, 7952 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shriver, D. F. & Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds 2nd edn (Wiley, 1986).

Lee, C. C., Ribbe, M. W. & Hu, Y. Purification of nitrogenase proteins. Methods Mol. Biol. 1876, 111–124 (2019).

Article  CAS  PubMed  Google Scholar 

Wiig, J. A., Lee, C. C., Fay, A. W., Hu, Y. & Ribbe, M. W. Purification of nitrogenase proteins. Methods Mol. Biol. 766, 93–103 (2011).

Article  CAS  PubMed  Google Scholar 

Jiménez-Vicente, E. et al. Application of affinity purification methods for analysis of the nitrogenase system from Azotobacter vinelandii. Methods Enzymol. 613, 231–255 (2018).

Article  PubMed  Google Scholar 

Spatzal, T. et al. Evidence for interstitial carbon in nitrogenase FeMo cofactor. Science 334, 940 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, J., Woo, D. & Rees, D. C. X-ray crystal structure of the nitrogenase molybdenum–iron protein from Clostridium pasteurianum at 3.0-A resolution. Biochemistry 32, 7104–7115 (1993).

Article  CAS  PubMed  Google Scholar 

Mayer, S. M., Lawson, D. M., Gormal, C. A., Roe, S. M. & Smith, B. E. New insights into structure–function relationships in nitrogenase: a 1.6 A resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe-protein. J. Mol. Biol. 292, 871–891 (1999).

Article  CAS  PubMed  Google Scholar 

Dos Santos, P. C. Molecular biology and genetic engineering in nitrogen fixation. Methods Mol. Biol. 766, 81–92 (2011).

Article  PubMed  Google Scholar 

Dos Santos, P. C. Genomic manipulations of the diazotroph Azotobacter vinelandii. Methods Mol. Biol. 1876, 91–109 (2019).

Article  PubMed  Google Scholar 

Echavarri-Erasun, C., Arragain, S. & Rubio, L. M. Purification of O2-sensitive metalloproteins. Methods Mol. Biol. 1122, 5–18 (2014).

Article  CAS  PubMed  Google Scholar 

Uchendu, S. N., Rafalowski, A., Cohn, E. F., Davoren, L. W. & Taylor, E. A. Anaerobic protein purification and kinetic analysis via oxygen electrode for studying DesB dioxygenase activity and inhibition. J. Vis. Exp. https://doi.org/10.3791/58307 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Uzarski, J. S., DiVito, M. D., Wertheim, J. A. & Miller, W. M. Essential design considerations for the resazurin reduction assay to noninvasively quantify cell expansion within perfused extracellular matrix scaffolds. Biomaterials 129, 163–175 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

Article  CAS  PubMed  Google Scholar 

Moore, M. M., Oteng-Pabi, S. K., Pandelieva, A. T., Mayo, S. L. & Chica, R. A. Recovery of red fluorescent protein chromophore maturation deficiency through rational design. PLoS ONE 7, e52463 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Linkerhägner, K. & Oelze, J. Cellular ATP levels and nitrogenase switchoff upon oxygen stress in chemostat cultures of Azotobacter vinelandii. J. Bacteriol. 177, 5289–5293 (1995).

Article  PubMed  PubMed Central  Google Scholar 

Wenke, B. B., Arias, R. J. & Spatzal, T. Crystallization of nitrogenase proteins. Methods Mol. Biol. 1876, 155–165 (2019).

Article  CAS  PubMed  Google Scholar 

Wenke, B. B. The Many Roles of the Nitrogenase Iron Protein PhD thesis, California Institute of Technology (2019).

Chen, J., Noble, A. J., Kang, J. Y. & Darst, S. A. Eliminating effects of particle adsorption to the air/water interface in single-particle cryo-electron microscopy: bacterial RNA polymerase and CHAPSO. J. Struct. Biol. X. https://doi.org/10.1016/j.yjsbx.2019.100005 (2019).

Noble, A. J. et al. Routine single particle CryoEM sample and grid characterization by tomography. eLife https://doi.org/10.7554/eLife.34257 (2018).

Noble, A. J. et al. Reducing effects of particle adsorption to the air-water interface in cryo-EM. Nat. Methods 15, 793–795 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Passmore, L. A. & Russo, C. J. Specimen preparation for high-resolution cryo-EM. Methods Enzymol. 579, 51–86 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wagner, A. O. et al. Medium preparation for the cultivation of microorganisms under strictly anaerobic/anoxic conditions. J. Vis. Exp. https://doi.org/10.3791/60155 (2019).

Lambertz, C. et al. O2 reactions at the six-iron active site (H-cluster) in [FeFe]-hydrogenase. J. Biol. Chem. 286, 40614–40623 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gillman, C., Nicolas, W. J., Martynowycz, M. W. & Gonen, T. Design and implementation of suspended drop crystallization. Preprint at bioRxiv https://doi.org/10.1101/2023.03.28.534639 (2023).

留言 (0)

沒有登入
gif