A practical guide for the preparation of C1-labeled α-amino acids using aldehyde catalysis with isotopically labeled CO2

Elmore, C. S. & Bragg, R. A. Isotope chemistry; a useful tool in the drug discovery arsenal. Bioorg. Med. Chem. Lett. 25, 167–171 (2015).

Article  CAS  PubMed  Google Scholar 

Derdau, V. et al. The future of (radio)-labeled compounds in research and development within the life science industry. Angew. Chem. Int. Ed. 62, e202306019 (2023).

Article  CAS  Google Scholar 

Kopf, S. et al. Recent developments for the deuterium and tritium labeling of organic molecules. Chem. Rev. 122, 6634–6718 (2022).

Article  CAS  PubMed  Google Scholar 

Alauddin, M. M. Positron emission tomography (PET) imaging with 18F-based radiotracers. Am. J. Nucl. Med. Mol. Imaging 2, 55–76 (2012).

CAS  PubMed  Google Scholar 

Han, J. et al. Chemical aspects of human and environmental overload with fluorine. Chem. Rev. 121, 4678–4742 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krauser, J. A. A perspective on tritium versus carbon-14: ensuring optimal label selection in pharmaceutical research and development. J. Label. Compd. Radiopharm. 56, 441–446 (2013).

Article  CAS  Google Scholar 

Jacobson, O., Kiesewetter, D. O. & Chen, X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjugate Chem. 26, 1–18 (2015).

Article  CAS  Google Scholar 

Hughes, A. B. Amino Acids, Peptides and Proteins in Organic Chemistry (Wiley, 2009).

Voges, R., Heys, J. R. & Moenius, T. Preparation of Compounds Labeled with Tritium and Carbon-14 (John Wiley & Sons, 2009).

Dell’isola, A. et al. Synthesis of carbon-14–labelled peptides. J. Label. Compd. Radiopharm. 62, 713–717 (2019).

Article  Google Scholar 

Mann, M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol. 7, 952–958 (2006).

Article  CAS  PubMed  Google Scholar 

Lin, M. T. et al. A rapid and robust method for selective isotope labeling of proteins. Methods 55, 370–378 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, C. & McConathy, J. Radiolabeled amino acids for oncologic imaging. J. Nucl. Med. 54, 1007–1010 (2013).

Article  CAS  PubMed  Google Scholar 

Galldiks, N. & Langen, K. J. Applications of PET imaging of neurological tumors with radiolabeled amino acids. Q. J. Nucl. Med. Mol. Imaging 59, 70–82 (2015).

CAS  PubMed  Google Scholar 

Jager, P. L. et al. Radiolabeled amino acids: basic aspects and clinical applications in oncology. J. Nucl. Med. 42, 432–445 (2001).

CAS  PubMed  Google Scholar 

Muttenthaler, M., King, G. F., Adams, D. J. & Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 20, 309–325 (2021).

Article  CAS  PubMed  Google Scholar 

Derdau, V. New trends and applications in cyanation isotope chemistry. J. Label. Compd. Radiopharm. 61, 1012–1023 (2018).

Article  CAS  Google Scholar 

Bragg, R. A., Sardana, M., Artelsmair, M. & Elmore, C. S. New trends and applications in carboxylation for isotope chemistry. J. Label. Compd. Radiopharm. 61, 934–948 (2018).

Article  CAS  Google Scholar 

Augustyniak, W., Kański, R. & Kańska, M. Synthesis of carbon-14 labeled [1-14C]-, and [2-14C]-L-tyrosine. J. Label. Compd. Radiopharm. 44, 553–560 (2001).

Article  CAS  Google Scholar 

Pająk, M., Pałka, K., Winnicka, E. & Kańska, M. The chemo-enzymatic synthesis of labeled L-amino acids and some of their derivatives. J. Radioanal. Nucl. Chem. 317, 643–666 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Pekošak, A., Filp, U., Poot, A. J. & Windhorst, A. D. From carbon-11-labeled amino acids to peptides in positron emission tomography: the synthesis and clinical application. Mol. Imaging Biol. 20, 510–532 (2018).

Article  PubMed  Google Scholar 

Harding, J. R., Hughes, R. A., Kelly, N. M., Sutherland, A. & Willis, C. L. Syntheses of isotopically labelled L-α-amino acids with an asymmetric centre at C-3. J. Chem. Soc. Perkin Trans. 1 20, 3406–3416 (2000).

Article  Google Scholar 

Song, F., Salter, R. & Weaner, L. E. A short synthesis of d-[1-14C]-serine of high enantiomeric purity. J. Label. Compd. Radiopharm. 58, 173–176 (2015).

Article  CAS  Google Scholar 

Rees, D. O., Bushby, N., Harding, J. R., Song, C. & Willis, C. L. Synthesis of isotopically labelled amino acids. J. Label. Compd. Radiopharm. 50, 399–401 (2007).

Article  CAS  Google Scholar 

Ling, J. R., Bronwen Cooper, P., Parker, S. J. & Armstead, I. P. Production and purification of mixed 14C-labelled peptides derived from plant biomass. J. Label. Compd. Radiopharm. 31, 417–426 (1992).

Article  CAS  Google Scholar 

LeMaster, D. M. & Cronan, J. E. Biosynthetic production of 13C-labeled amino acids with site-specific enrichment. J. Biol. Chem. 257, 1224–1230 (1982).

Article  CAS  PubMed  Google Scholar 

Bsharat, O. et al. Aldehyde-catalysed carboxylate exchange in α-amino acids with isotopically labelled CO2. Nat. Chem. 14, 1367–1374 (2022).

Article  CAS  PubMed  Google Scholar 

Labiche, A., Malandain, A., Molins, M., Taran, F. & Audisio, D. Modern strategies for carbon isotope exchange. Angew. Chem. Int. Ed. 62, e202303535 (2023).

Article  CAS  Google Scholar 

Destro, G. et al. Transition-metal-free carbon isotope exchange of phenyl acetic acids. Angew. Chem. Int. Ed. 59, 13490–13495 (2020).

Article  CAS  Google Scholar 

Kong, D., Moon, P. J., Lui, E. K. J., Bsharat, O. & Lundgren, R. J. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution. Science 369, 557–561 (2020).

Article  CAS  PubMed  Google Scholar 

Kong, D. et al. Fast carbon isotope exchange of carboxylic acids enabled by organic photoredox catalysis. J. Am. Chem. Soc. 143, 2200–2206 (2021).

Article  CAS  PubMed  Google Scholar 

Babin, V. et al. Photochemical strategy for carbon isotope exchange with CO2. ACS Catal. 11, 2968–2976 (2021).

Article  CAS  Google Scholar 

Snider, M. J. & Wolfenden, R. The rate of spontaneous decarboxylation of amino acids. J. Am. Chem. Soc. 122, 11507–11508 (2000).

Article  CAS  Google Scholar 

Silverman, R. B. (ed.) in Organic Chemistry of Enzyme-Catalyzed Reactions 2nd edn, Ch. 8, 321–357 (Academic, 2002).

Li, T., Huo, L., Pulley, C. & Liu, A. Decarboxylation mechanisms in biological system. Bioorg. Chem. 43, 2–14 (2012).

Article  CAS  PubMed  Google Scholar 

Pawelek, P. D. et al. The structure of l-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J. 19, 4204–4215 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Umhau, S. et al. The x-ray structure of d-amino acid oxidase at very high resolution identifies the chemical mechanism of flavin-dependent substrate dehydrogenation. Proc. Natl Acad. Sci. USA 97, 12463–12468 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif