Noninvasive in vivo microscopy of single neutrophils in the mouse brain via NIR-II fluorescent nanomaterials

Verweij, F. J. et al. The power of imaging to understand extracellular vesicle biology in vivo. Nat. Methods 18, 1013–1026 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Panferov, E. V. & Malashicheva, A. B. The use of fluorescence microscopy in the study of the processes of intracellular signaling. Cell Tissue Biol. 16, 401–411 (2022).

Article  CAS  Google Scholar 

Gartner, Z. J., Prescher, J. A. & Lavis, L. D. Unraveling cell-to-cell signaling networks with chemical biology. Nat. Chem. Biol. 13, 564–568 (2017).

Article  CAS  PubMed  Google Scholar 

Dai, T. et al. A fluorogenic trehalose probe for tracking phagocytosed Mycobacterium tuberculosis. J. Am. Chem. Soc. 142, 15259–15264 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pittet, M. J. & Weissleder, R. Intravital imaging. Cell 147, 983–991 (2011).

Article  CAS  PubMed  Google Scholar 

Robertson, T. A., Bunel, F. & Roberts, M. S. Fluorescein derivatives in intravital fluorescence imaging. Cells 2, 591–606 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ko, J. et al. In vivo click chemistry enables multiplexed intravital microscopy. Adv. Sci. 9, 2200064 (2022).

Article  CAS  Google Scholar 

Hong, G. et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photon. 8, 723–730 (2014).

Article  CAS  Google Scholar 

Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

Article  CAS  PubMed  Google Scholar 

Carr, J. A. et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc. Natl Acad. Sci. USA 115, 4465–4470 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y., Wang, S. & Zhang, F. Near-infrared luminescence high-contrast in vivo biomedical imaging. Nat. Rev. Bioeng. 1, 60–78 (2023).

Article  Google Scholar 

Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

Article  CAS  PubMed  Google Scholar 

Antaris, A. L. et al. A small-molecule dye for NIR-II imaging. Nat. Mater. 15, 235–242 (2016).

Article  CAS  PubMed  Google Scholar 

Chang, B. et al. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nat. Biomed. Eng. 6, 629–639 (2021).

Article  PubMed  Google Scholar 

Cosco, E. D. et al. Shortwave infrared polymethine fluorophores matched to excitation lasers enable non-invasive, multicolour in vivo imaging in real time. Nat. Chem. 12, 1123–1130 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fan, Y. et al. NIR-II emissive Ru(II) metallacycle assisting fluorescence imaging and cancer therapy. Small 18, 2201625 (2022).

Article  CAS  Google Scholar 

Welsher, K. et al. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 4, 773–780 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bruns, O. T. et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat. Biomed. Eng. 1, 0056 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y. et al. Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett. 17, 6330–6334 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, P. et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat. Commun. 9, 2898 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Li, B. H., Lu, L. F., Zhao, M. Y., Lei, Z. H. & Zhang, F. An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew. Chem. Int. Ed. 57, 7483–7487 (2018).

Article  CAS  Google Scholar 

Bandi, V. G. et al. Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines. Nat. Methods 19, 353–358 (2022).

Article  CAS  PubMed  Google Scholar 

Lei, Z. et al. Stable, wavelength-tunable fluorescent dyes in the NIR-II region for in vivo high-contrast bioimaging and multiplexed biosensing. Angew. Chem. 58, 8166–8171 (2019).

Article  CAS  Google Scholar 

Li, K. et al. J-aggregates of meso-[2.2]paracyclophanyl-BODIPY dye for NIR-II imaging. Nat. Commun. 12, 2376 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feng, Z. et al. Perfecting and extending the near-infrared imaging window. Light Sci. Appl. 10, 197 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucero, M. Y. et al. Development of NIR-II photoacoustic probes tailored for deep-tissue sensing of nitric oxide. J. Am. Chem. Soc. 143, 7196–7202 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, S. et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat. Commun. 10, 1058 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Yao, C. et al. A bright, renal-clearable NIR-II brush macromolecular probe with long blood circulation time for kidney disease bioimaging. Angew. Chem. Int. Ed. 61, e202114273 (2022).

Article  CAS  Google Scholar 

Fan, Y. et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat. Nanotechnol. 13, 941–946 (2018).

Article  CAS  PubMed  Google Scholar 

Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, T. et al. A hybrid erbium(III)–bacteriochlorin near-infrared probe for multiplexed biomedical imaging. Nat. Mater. 20, 1571–1578 (2021).

Article  CAS  PubMed  Google Scholar 

Lu, L. et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat. Commun. 11, 4192 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Yang, Y. et al. NIR-II chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging. Angew. Chem. 59, 18380–18385 (2020).

Article  CAS  Google Scholar 

Chen, H. et al. Differential responses of transplanted stem cells to diseased environment unveiled by a molecular NIR-II cell tracker. Research 2021, 9798580 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang, F. et al. In vivo non-invasive confocal fluorescence imaging beyond 1,700 nm using superconducting nanowire single-photon detectors. Nat. Nanotechnol. 17, 653–660 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cai, Z. et al. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics 10, 4265–4276 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wan, H. et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat. Commun. 9, 1171 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Zhu, S. et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv. Mater. 30, e1705799 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

Article 

留言 (0)

沒有登入
gif