Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).
CAS PubMed PubMed Central Article Google Scholar
Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).
CAS PubMed PubMed Central Article Google Scholar
Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017).
CAS PubMed Article Google Scholar
Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).
CAS PubMed PubMed Central Article Google Scholar
Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).
CAS PubMed Article Google Scholar
Trujillo-Vargas, C. M. et al. The gut-eye-lacrimal gland-microbiome axis in Sjögren syndrome. Ocul. Surf. 18, 335–344 (2020).
Cavuoto, K. M., Banerjee, S. & Galor, A. Relationship between the microbiome and ocular health. Ocul. Surf. 17, 384–392 (2019).
Zaheer, M. et al. Protective role of commensal bacteria in Sjögren Syndrome. J. Autoimmun. 93, 45–56 (2018).
CAS PubMed PubMed Central Article Google Scholar
Horai, R. et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43, 343–353 (2015).
CAS PubMed PubMed Central Article Google Scholar
Nakamura, Y. K. et al. Gut microbial alterations associated with protection from autoimmune uveitis. Invest. Ophthalmol. Vis. Sci. 57, 3747–3758 (2016).
CAS PubMed PubMed Central Article Google Scholar
Liu, J. et al. Antibiotic-induced dysbiosis of gut microbiota impairs corneal nerve regeneration by affecting CCR2-negative macrophage distribution. Am. J. Pathol. 188, 2786–2799 (2018).
CAS PubMed PubMed Central Article Google Scholar
Wu, M. et al. Antibiotic-induced dysbiosis of gut microbiota impairs corneal development in postnatal mice by affecting CCR2 negative macrophage distribution. Mucosal Immunol. 13, 47–63 (2020).
CAS PubMed Article Google Scholar
Kugadas, A., Wright, Q., Geddes-McAlister, J. & Gadjeva, M. Role of microbiota in strengthening ocular mucosal barrier function through secretory IgA. Investig. Ophthalmol. Vis. Sci. 58, 4593–4600 (2017).
Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).
CAS PubMed PubMed Central Article Google Scholar
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).
Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).
Dong, Q. et al. Diversity of bacteria at healthy human conjunctiva. Investig. Ophthalmol. Vis. Sci. 52, 5408–5413 (2011).
Doan, T. et al. Paucibacterial microbiome and resident DNA virome of the healthy conjunctiva. Invest. Ophthalmol. Vis. Sci. 57, 5116–5126 (2016).
CAS PubMed PubMed Central Article Google Scholar
Ozkan, J. et al. Temporal stability and composition of the ocular surface microbiome. Sci. Rep. 7, 9880 (2017).
PubMed PubMed Central Article Google Scholar
Kugadas, A. & Gadjeva, M. Impact of microbiome on ocular health. Ocul. Surf. 14, 342–349 (2016).
PubMed PubMed Central Article Google Scholar
Aragona, P. et al. The ocular microbiome and microbiota and their effects on ocular surface pathophysiology and disorders. Surv. Ophthalmol. 66, 907–925 (2021).
Ozkan, J. & Willcox, M. D. The ocular microbiome: molecular characterisation of a unique and low microbial environment. Curr. Eye Res. 44, 685–694 (2019).
CAS PubMed Article Google Scholar
Gomes, J. Á. P., Frizon, L. & Demeda, V. F. Ocular surface microbiome in health and disease. Asia Pac. J. Ophthalmol. (Philos.). 9, 505–511 (2020).
Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Investig. 113, 1040–1050 (2004).
CAS PubMed PubMed Central Article Google Scholar
Cao, R. et al. Mouse corneal lymphangiogenesis model. Nat. Protoc. 6, 817–826 (2011).
CAS PubMed Article Google Scholar
Song, H. B. et al. Mesenchymal stromal cells inhibit inflammatory lymphangiogenesis in the cornea by suppressing macrophage in a TSG-6-dependent manner. Mol. Ther. 26, 162–172 (2018).
Gurung, H. R., Carr, M. M., Bryant, K., Chucair-Elliott, A. J. & Carr, D. J. Fibroblast growth factor-2 drives and maintains progressive corneal neovascularization following HSV-1 infection. Mucosal Immunol. 22, 172–185 (2018).
Xu, J. et al. The effect of different combinations of antibiotic cocktails on mice and selection of animal models for further microbiota research. Appl. Microbiol. Biotechnol. 105,, 1669–1681 (2021).
Miyake, H. et al. Toxicities of and inflammatory responses to moxifloxacin, cefuroxime, and vancomycin on retinal vascular cells. Sci. Rep. 9, 9745 (2019).
PubMed PubMed Central Article CAS Google Scholar
Dalhoff, A. & Shalit, I. Immunomodulatory effects of quinolones. Lancet Infect. Dis. 3, 359–371 (2003).
CAS PubMed Article Google Scholar
Qiu, Z. et al. Bidirectional effects of moxifloxacin on the pro‑inflammatory response in lipopolysaccharide‑stimulated mouse peritoneal macrophages. Mol. Med. Rep. 18, 5399–5408 (2018).
CAS PubMed PubMed Central Google Scholar
Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).
CAS PubMed Article Google Scholar
Yang, T. et al. Daphnetin inhibits corneal inflammation and neovascularization on a mouse model of corneal alkali burn. Int. Immunopharmacol. 103, 108434 (2022).
CAS PubMed Article Google Scholar
Li, Q. et al. Dasatinib loaded nanostructured lipid carriers for effective treatment of corneal neovascularization. Biomater. Sci. 9, 2571–2583 (2021).
CAS PubMed Article Google Scholar
Xu, K. et al. DCZ3301, an aryl-guanidino agent, inhibits ocular neovascularization via PI3K/AKT and ERK1/2 signaling pathways. Exp. Eye Res. 201, 108267 (2020).
CAS PubMed Article Google Scholar
Wan, S. S., Pan, Y. M., Yang, W. J., Rao, Z. Q. & Yang, Y. N. Inhibition of EZH2 alleviates angiogenesis in a model of corneal neovascularization by blocking FoxO3a-mediated oxidative stress. FASEB J. 34, 10168–10181 (2020).
CAS PubMed Article Google Scholar
Tang, M. et al. Tetramethylpyrazine in a murine alkali-burn model blocks NFκB/NRF-1/CXCR4-signaling-induced corneal neovascularization. Investig. Ophthalmol. Vis. Sci. 59, 2133–2141 (2018).
Garreis, F., Gottschalt, M. & Paulsen, F. P. Antimicrobial peptides as a major part of the innate immune defense at the ocular surface. Dev. Ophthalmol. 45, 16–22 (2010).
Mantelli, F. & Argüeso, P. Functions of ocular surface mucins in health and disease. Curr. Opin. Allergy Clin. Immunol. 8, 477–483 (2008).
CAS PubMed PubMed Central Article Google Scholar
Mantelli, F., Mauris, J. & Argüeso, P. The ocular surface epithelial barrier and other mechanisms of mucosal protection: from allergy to infectious diseases. Curr. Opin. Allergy Clin. Immunol. 13, 563–568 (2013).
Martinez-Carrasco, R., Argüeso, P. & Fini, M. E. Membrane-associated mucins of the human ocular surface in health and disease. Ocul. Surf. 21, 313–330 (2021).
留言 (0)