Ocular microbiota promotes pathological angiogenesis and inflammation in sterile injury-driven corneal neovascularization

Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Belkaid, Y. & Harrison, O. J. Homeostatic immunity and the microbiota. Immunity 46, 562–576 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017).

CAS  PubMed  Article  Google Scholar 

Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

CAS  PubMed  Article  Google Scholar 

Trujillo-Vargas, C. M. et al. The gut-eye-lacrimal gland-microbiome axis in Sjögren syndrome. Ocul. Surf. 18, 335–344 (2020).

PubMed  Article  Google Scholar 

Cavuoto, K. M., Banerjee, S. & Galor, A. Relationship between the microbiome and ocular health. Ocul. Surf. 17, 384–392 (2019).

PubMed  Article  Google Scholar 

Zaheer, M. et al. Protective role of commensal bacteria in Sjögren Syndrome. J. Autoimmun. 93, 45–56 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Horai, R. et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43, 343–353 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nakamura, Y. K. et al. Gut microbial alterations associated with protection from autoimmune uveitis. Invest. Ophthalmol. Vis. Sci. 57, 3747–3758 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu, J. et al. Antibiotic-induced dysbiosis of gut microbiota impairs corneal nerve regeneration by affecting CCR2-negative macrophage distribution. Am. J. Pathol. 188, 2786–2799 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wu, M. et al. Antibiotic-induced dysbiosis of gut microbiota impairs corneal development in postnatal mice by affecting CCR2 negative macrophage distribution. Mucosal Immunol. 13, 47–63 (2020).

CAS  PubMed  Article  Google Scholar 

Kugadas, A., Wright, Q., Geddes-McAlister, J. & Gadjeva, M. Role of microbiota in strengthening ocular mucosal barrier function through secretory IgA. Investig. Ophthalmol. Vis. Sci. 58, 4593–4600 (2017).

CAS  Article  Google Scholar 

Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

Article  CAS  Google Scholar 

Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012).

Article  CAS  Google Scholar 

Dong, Q. et al. Diversity of bacteria at healthy human conjunctiva. Investig. Ophthalmol. Vis. Sci. 52, 5408–5413 (2011).

CAS  Article  Google Scholar 

Doan, T. et al. Paucibacterial microbiome and resident DNA virome of the healthy conjunctiva. Invest. Ophthalmol. Vis. Sci. 57, 5116–5126 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ozkan, J. et al. Temporal stability and composition of the ocular surface microbiome. Sci. Rep. 7, 9880 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Kugadas, A. & Gadjeva, M. Impact of microbiome on ocular health. Ocul. Surf. 14, 342–349 (2016).

PubMed  PubMed Central  Article  Google Scholar 

Aragona, P. et al. The ocular microbiome and microbiota and their effects on ocular surface pathophysiology and disorders. Surv. Ophthalmol. 66, 907–925 (2021).

PubMed  Article  Google Scholar 

Ozkan, J. & Willcox, M. D. The ocular microbiome: molecular characterisation of a unique and low microbial environment. Curr. Eye Res. 44, 685–694 (2019).

CAS  PubMed  Article  Google Scholar 

Gomes, J. Á. P., Frizon, L. & Demeda, V. F. Ocular surface microbiome in health and disease. Asia Pac. J. Ophthalmol. (Philos.). 9, 505–511 (2020).

Article  Google Scholar 

Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Investig. 113, 1040–1050 (2004).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cao, R. et al. Mouse corneal lymphangiogenesis model. Nat. Protoc. 6, 817–826 (2011).

CAS  PubMed  Article  Google Scholar 

Song, H. B. et al. Mesenchymal stromal cells inhibit inflammatory lymphangiogenesis in the cornea by suppressing macrophage in a TSG-6-dependent manner. Mol. Ther. 26, 162–172 (2018).

PubMed  Article  Google Scholar 

Gurung, H. R., Carr, M. M., Bryant, K., Chucair-Elliott, A. J. & Carr, D. J. Fibroblast growth factor-2 drives and maintains progressive corneal neovascularization following HSV-1 infection. Mucosal Immunol. 22, 172–185 (2018).

Article  CAS  Google Scholar 

Xu, J. et al. The effect of different combinations of antibiotic cocktails on mice and selection of animal models for further microbiota research. Appl. Microbiol. Biotechnol. 105,, 1669–1681 (2021).

Article  CAS  Google Scholar 

Miyake, H. et al. Toxicities of and inflammatory responses to moxifloxacin, cefuroxime, and vancomycin on retinal vascular cells. Sci. Rep. 9, 9745 (2019).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Dalhoff, A. & Shalit, I. Immunomodulatory effects of quinolones. Lancet Infect. Dis. 3, 359–371 (2003).

CAS  PubMed  Article  Google Scholar 

Qiu, Z. et al. Bidirectional effects of moxifloxacin on the pro‑inflammatory response in lipopolysaccharide‑stimulated mouse peritoneal macrophages. Mol. Med. Rep. 18, 5399–5408 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Potente, M., Gerhardt, H. & Carmeliet, P. Basic and therapeutic aspects of angiogenesis. Cell 146, 873–887 (2011).

CAS  PubMed  Article  Google Scholar 

Yang, T. et al. Daphnetin inhibits corneal inflammation and neovascularization on a mouse model of corneal alkali burn. Int. Immunopharmacol. 103, 108434 (2022).

CAS  PubMed  Article  Google Scholar 

Li, Q. et al. Dasatinib loaded nanostructured lipid carriers for effective treatment of corneal neovascularization. Biomater. Sci. 9, 2571–2583 (2021).

CAS  PubMed  Article  Google Scholar 

Xu, K. et al. DCZ3301, an aryl-guanidino agent, inhibits ocular neovascularization via PI3K/AKT and ERK1/2 signaling pathways. Exp. Eye Res. 201, 108267 (2020).

CAS  PubMed  Article  Google Scholar 

Wan, S. S., Pan, Y. M., Yang, W. J., Rao, Z. Q. & Yang, Y. N. Inhibition of EZH2 alleviates angiogenesis in a model of corneal neovascularization by blocking FoxO3a-mediated oxidative stress. FASEB J. 34, 10168–10181 (2020).

CAS  PubMed  Article  Google Scholar 

Tang, M. et al. Tetramethylpyrazine in a murine alkali-burn model blocks NFκB/NRF-1/CXCR4-signaling-induced corneal neovascularization. Investig. Ophthalmol. Vis. Sci. 59, 2133–2141 (2018).

CAS  Article  Google Scholar 

Garreis, F., Gottschalt, M. & Paulsen, F. P. Antimicrobial peptides as a major part of the innate immune defense at the ocular surface. Dev. Ophthalmol. 45, 16–22 (2010).

PubMed  Article  Google Scholar 

Mantelli, F. & Argüeso, P. Functions of ocular surface mucins in health and disease. Curr. Opin. Allergy Clin. Immunol. 8, 477–483 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mantelli, F., Mauris, J. & Argüeso, P. The ocular surface epithelial barrier and other mechanisms of mucosal protection: from allergy to infectious diseases. Curr. Opin. Allergy Clin. Immunol. 13, 563–568 (2013).

PubMed  Article  Google Scholar 

Martinez-Carrasco, R., Argüeso, P. & Fini, M. E. Membrane-associated mucins of the human ocular surface in health and disease. Ocul. Surf. 21, 313–330 (2021).

PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif