Lessons from helminths: what worms have taught us about mucosal immunology

Ogilvie, B. M. Reagin-like antibodies in animals immune to helminth parasites. Nature 204, 91–92 (1964).

CAS  Article  Google Scholar 

Kay, A. B. The early history of the eosinophil. Clin. Exp. Allergy 45, 575–582 (2015).

CAS  Article  Google Scholar 

Basten, A., Boyer, M. H. & Beeson, P. B. Mechanism of eosinophilia. I. Factors affecting the eosinophil response of rats to Trichinella spiralis. J. Exp. Med. 131, 1271–1287 (1970).

CAS  Article  Google Scholar 

Kelly, J. D. & Ogilvie, B. M. Intestinal mast cell and eosinophil numbers during worm expulsion in nulliparous and lactating rats infected with Nippostrongylus brasiliensis. Int. Arch. Allergy Appl. Immunol. 43, 497–509 (1972).

CAS  Article  Google Scholar 

Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

CAS  Article  Google Scholar 

Finkelman, F. D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 201, 139–155 (2004).

CAS  Article  Google Scholar 

Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710 (1991).

CAS  Article  Google Scholar 

Noben-Trauth, N. et al. An interleukin 4 (IL-4)-independent pathway for CD4+ T cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc. Natl Acad. Sci. USA 94, 10838–10843 (1997).

CAS  Article  Google Scholar 

Bancroft, A. J., McKenzie, A. N. & Grencis, R. K. A critical role for IL-13 in resistance to intestinal nematode infection. J. Immunol. 160, 3453–3461 (1998).

CAS  PubMed  Google Scholar 

Cliffe, L. J. et al. Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 308, 1463–1465 (2005).

CAS  Article  Google Scholar 

Anthony, R. M., Rutitzky, L. I., Urban, J. F. Jr, Stadecker, M. J. & Gause, W. C. Protective immune mechanisms in helminth infection. Nat. Rev. Immunol. 7, 975–987 (2007).

CAS  Article  Google Scholar 

Miller, H. R., Huntley, J. F. & Wallace, G. R. Immune exclusion and mucus trapping during the rapid expulsion of Nippostrongylus brasiliensis from primed rats. Immunology 44, 419–429 (1981).

CAS  PubMed  PubMed Central  Google Scholar 

Loke, P., MacDonald, A. S., Robb, A., Maizels, R. M. & Allen, J. E. Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact. Eur. J. Immunol. 30, 2669–2678 (2000).

CAS  Article  Google Scholar 

Allen, J. E. & Wynn, T. A. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 7, e1002003 (2011).

CAS  Article  Google Scholar 

Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

CAS  Article  Google Scholar 

Glatman Zaretsky, A. et al. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med. 206, 991–999 (2009).

Article  Google Scholar 

King, I. L. & Mohrs, M. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med. 206, 1001–1007 (2009).

CAS  Article  Google Scholar 

Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

CAS  Article  Google Scholar 

Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230 (2016).

CAS  Article  Google Scholar 

Varyani, F. et al. The IL-25-dependent tuft cell circuit driven by intestinal helminths requires macrophage migration inhibitory factor (MIF). Mucosal Immunol. (2022).

Kotas, M. E. et al. CISH constrains the tuft-ILC2 circuit to set epithelial and immune tone. Mucosal Immunol. 14, 1295–1305 (2021).

CAS  Article  Google Scholar 

Inclan-Rico, J. M., Rossi, H. L. & Herbert, D. R. “Every cell is an immune cell; contributions of non-hematopoietic cells to anti-helminth immunity”. Mucosal Immunol. (2022).

Spalinger, M. R. et al. Loss of protein tyrosine phosphatase non-receptor type 2 reduces IL-4-driven alternative macrophage activation. Mucosal Immunol. 15, 74–83 (2022).

CAS  Article  Google Scholar 

Pascal, M. et al. The neuropeptide VIP potentiates intestinal innate type 2 and type 3 immunity in response to feeding. Mucosal Immunol. (2022).

Michla, M. & Wilhelm, C. Food for thought – ILC metabolism in the context of helminth infections. MucosalImmunol. https://doi.org/10.1038/s41385-022-00559-y.

Moyat, M. et al. Microbial regulation of intestinal motility provides resistance against helminth infection. Mucosal Immunol. (2022).

Kapse, B. et al. Age-dependent rise in IFN-gamma competence undermines effective type 2 responses to nematode infection. Mucosal Immunol. (2022).

Webster, H. C. et al. Tissue-based IL-10 signalling in helminth infection limits IFNgamma expression and promotes the intestinal Th2 response. Mucosal Immunol. (2022).

Classon, C. H. et al. Intestinal helminth infection transforms the CD4(+) T cell composition of the skin. Mucosal Immunol. 15, 257–267 (2022).

CAS  Article  Google Scholar 

Vacca, F. & Le Gros, G. Tissue-specific immunity in helminth infections. Mucosal Immunol. (2022).

Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

CAS  PubMed  Google Scholar 

Maizels, R. M. & Yazdanbakhsh, M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat. Rev. Immunol. 3, 733–744 (2003).

CAS  Article  Google Scholar 

Loke, P., Lee, S. C. & Oyesola, O. O. Effects of helminths on the human immune response and the microbiome. Mucosal Immunol. (2022).

留言 (0)

沒有登入
gif