Ogilvie, B. M. Reagin-like antibodies in animals immune to helminth parasites. Nature 204, 91–92 (1964).
Kay, A. B. The early history of the eosinophil. Clin. Exp. Allergy 45, 575–582 (2015).
Basten, A., Boyer, M. H. & Beeson, P. B. Mechanism of eosinophilia. I. Factors affecting the eosinophil response of rats to Trichinella spiralis. J. Exp. Med. 131, 1271–1287 (1970).
Kelly, J. D. & Ogilvie, B. M. Intestinal mast cell and eosinophil numbers during worm expulsion in nulliparous and lactating rats infected with Nippostrongylus brasiliensis. Int. Arch. Allergy Appl. Immunol. 43, 497–509 (1972).
Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).
Finkelman, F. D. et al. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 201, 139–155 (2004).
Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710 (1991).
Noben-Trauth, N. et al. An interleukin 4 (IL-4)-independent pathway for CD4+ T cell IL-4 production is revealed in IL-4 receptor-deficient mice. Proc. Natl Acad. Sci. USA 94, 10838–10843 (1997).
Bancroft, A. J., McKenzie, A. N. & Grencis, R. K. A critical role for IL-13 in resistance to intestinal nematode infection. J. Immunol. 160, 3453–3461 (1998).
Cliffe, L. J. et al. Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 308, 1463–1465 (2005).
Anthony, R. M., Rutitzky, L. I., Urban, J. F. Jr, Stadecker, M. J. & Gause, W. C. Protective immune mechanisms in helminth infection. Nat. Rev. Immunol. 7, 975–987 (2007).
Miller, H. R., Huntley, J. F. & Wallace, G. R. Immune exclusion and mucus trapping during the rapid expulsion of Nippostrongylus brasiliensis from primed rats. Immunology 44, 419–429 (1981).
CAS PubMed PubMed Central Google Scholar
Loke, P., MacDonald, A. S., Robb, A., Maizels, R. M. & Allen, J. E. Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact. Eur. J. Immunol. 30, 2669–2678 (2000).
Allen, J. E. & Wynn, T. A. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 7, e1002003 (2011).
Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).
Glatman Zaretsky, A. et al. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med. 206, 991–999 (2009).
King, I. L. & Mohrs, M. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med. 206, 1001–1007 (2009).
Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).
Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230 (2016).
Varyani, F. et al. The IL-25-dependent tuft cell circuit driven by intestinal helminths requires macrophage migration inhibitory factor (MIF). Mucosal Immunol. (2022).
Kotas, M. E. et al. CISH constrains the tuft-ILC2 circuit to set epithelial and immune tone. Mucosal Immunol. 14, 1295–1305 (2021).
Inclan-Rico, J. M., Rossi, H. L. & Herbert, D. R. “Every cell is an immune cell; contributions of non-hematopoietic cells to anti-helminth immunity”. Mucosal Immunol. (2022).
Spalinger, M. R. et al. Loss of protein tyrosine phosphatase non-receptor type 2 reduces IL-4-driven alternative macrophage activation. Mucosal Immunol. 15, 74–83 (2022).
Pascal, M. et al. The neuropeptide VIP potentiates intestinal innate type 2 and type 3 immunity in response to feeding. Mucosal Immunol. (2022).
Michla, M. & Wilhelm, C. Food for thought – ILC metabolism in the context of helminth infections. MucosalImmunol. https://doi.org/10.1038/s41385-022-00559-y.
Moyat, M. et al. Microbial regulation of intestinal motility provides resistance against helminth infection. Mucosal Immunol. (2022).
Kapse, B. et al. Age-dependent rise in IFN-gamma competence undermines effective type 2 responses to nematode infection. Mucosal Immunol. (2022).
Webster, H. C. et al. Tissue-based IL-10 signalling in helminth infection limits IFNgamma expression and promotes the intestinal Th2 response. Mucosal Immunol. (2022).
Classon, C. H. et al. Intestinal helminth infection transforms the CD4(+) T cell composition of the skin. Mucosal Immunol. 15, 257–267 (2022).
Vacca, F. & Le Gros, G. Tissue-specific immunity in helminth infections. Mucosal Immunol. (2022).
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).
Maizels, R. M. & Yazdanbakhsh, M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat. Rev. Immunol. 3, 733–744 (2003).
Loke, P., Lee, S. C. & Oyesola, O. O. Effects of helminths on the human immune response and the microbiome. Mucosal Immunol. (2022).
留言 (0)