Mucosal immunology of the ocular surface

Sridhar, M. S. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 66, 190–194 (2018).

PubMed  PubMed Central  Article  Google Scholar 

Xiao, Y. et al. Goblet cell-produced retinoic acid suppresses CD86 expression and IL-12 production in bone marrow-derived cells. Int. Immunol. 30, 457–470 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Contreras-Ruiz, L., Ghosh-Mitra, A., Shatos, M. A., Dartt, D. A. & Masli, S. Modulation of conjunctival goblet cell function by inflammatory cytokines. Mediators Inflamm. 2013, 636812 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Payne, A. P. The harderian gland: a tercentennial review. J. Anat. 185, 1–49 (1994).

PubMed  PubMed Central  Google Scholar 

Knop, E. & Knop, N. Lacrimal drainage-associated lymphoid tissue (LDALT): a part of the human mucosal immune system. Invest Ophthalmol. Vis. Sci. 42, 566–574 (2001).

CAS  PubMed  Google Scholar 

Knop, N. & Knop, E. Conjunctiva-associated lymphoid tissue in the human eye. Investig. Ophthalmol. Vis. Sci. 41, 1270–1279 (2000).

CAS  Google Scholar 

Chodosh, J., Nordquist, R. E. & Kennedy, R. C. Comparative anatomy of mammalian conjunctival lymphoid tissue: a putative mucosal immune site. Dev. Comp. Immunol. 22, 621–630 (1998).

CAS  PubMed  Article  Google Scholar 

Knop, E. & Knop, N. The role of eye-associated lymphoid tissue in corneal immune protection. J. Anat. 206, 271–285 (2005).

PubMed  PubMed Central  Article  Google Scholar 

Knop, E., Knop, N. & Claus, P. Local production of secretory IgA in the eye-associated lymphoid tissue (EALT) of the normal human ocular surface. Investig. Ophthalmol. Vis. Sci. 49, 2322–2329 (2008).

Article  Google Scholar 

Schuh, J. C. L. Mucosa-Associated Lymphoid Tissue and Tertiary Lymphoid Structures of the Eye and Ear in Laboratory Animals. Toxicol. Pathol. 49, 472–482 (2021).

PubMed  Article  Google Scholar 

Allansmith, M. R. et al. The immune response of the lacrimal gland to antigenic exposure. Curr. Eye Res. 6, 921–927 (1987).

CAS  PubMed  Article  Google Scholar 

Gudmundsson, O. G., Benediktsson, H. & Olafsdottir, K. T-lymphocyte subsets in the human lacrimal gland. Acta Ophthalmologica 66, 19–23 (1988).

CAS  PubMed  Article  Google Scholar 

Gudmundsson, O. G. et al. T cell populations in the lacrimal gland during aging. Acta Ophthalmologica 66, 490–497 (1988).

CAS  PubMed  Article  Google Scholar 

Nasu, M., Matsubara, O. & Yamamoto, H. Post-mortem prevalence of lymphocytic infiltration of the lacrymal gland: a comparative study in autoimmune and non-autoimmune diseases. J. Pathol. 143, 11–15 (1984).

CAS  PubMed  Article  Google Scholar 

Damato, B. E., Allan, D., Murray, S. B. & Lee, W. R. Senile atrophy of the human lacrimal gland: the contribution of chronic inflammatory disease. Br. J. Ophthalmol. 68, 674–680 (1984).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Obata, H. Anatomy and histopathology of the human lacrimal gland. Cornea 25, S82–S89 (2006).

PubMed  Article  Google Scholar 

Obata, H., Yamamoto, S., Horiuchi, H. & Machinami, R. Histopathologic study of human lacrimal gland. Stat. Anal. Spec. Ref. aging Ophthalmol. 102, 678–686 (1995).

CAS  Google Scholar 

Trujillo-Vargas, C. M. et al. Immune phenotype of the CD4 + T cells in the aged lymphoid organs and lacrimal glands. GeroScience, https://doi.org/10.1007/s11357-022-00529-z (2022).

Steven, P. et al. Experimental induction and three-dimensional two-photon imaging of conjunctiva-associated lymphoid tissue. Investig. Ophthalmol. Vis. Sci. 49, 1512–1517 (2008).

Article  Google Scholar 

Siebelmann, S. et al. Development, alteration and real time dynamics of conjunctiva-associated lymphoid tissue. PloS One 8, e82355–e82355 (2013).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Steven, P. & Gebert, A. Conjunctiva-associated lymphoid tissue - current knowledge, animal models and experimental prospects. Ophthalmic Res. 42, 2–8 (2009).

PubMed  Article  Google Scholar 

Steven, P. et al. Disease-Specific Expression of Conjunctiva Associated Lymphoid Tissue (CALT) in Mouse Models of Dry Eye Disease and Ocular Allergy. Int. J. Mol. Sci. 21, https://doi.org/10.3390/ijms21207514 (2020).

Hingorani, M., Metz, D. & Lightman, S. L. Characterisation of the normal conjunctival leukocyte population. Exp. Eye Res. 64, 905–912 (1997).

CAS  PubMed  Article  Google Scholar 

Hingorani, M., Calder, V. L., Buckley, R. J. & Lightman, S. L. The role of conjunctival epithelial cells in chronic ocular allergic disease. Exp. Eye Res. 67, 491–500 (1998).

CAS  PubMed  Article  Google Scholar 

Dua, H. S., Gomes, J. A., Donoso, L. A. & Laibson, P. R. The ocular surface as part of the mucosal immune system: conjunctival mucosa-specific lymphocytes in ocular surface pathology. Eye 9, 261–267 (1995).

PubMed  Article  Google Scholar 

Coursey, T. G. et al. Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells. Mucosal Immunol. 10, 743–756 (2017).

CAS  PubMed  Article  Google Scholar 

O’Brien, R. L. et al. αβ TCR+ T cells, but not B cells, promote autoimmune keratitis in b10 mice lacking γδ T cells. Investig. Ophthalmol. Vis. Sci. 53, 301–308 (2012).

Article  CAS  Google Scholar 

O’Brien, R. L. et al. Protective role of gammadelta T cells in spontaneous ocular inflammation. Investig. Ophthalmol. Vis. Sci. 50, 3266–3274 (2009).

Article  Google Scholar 

Zhang, X. et al. NK cells promote Th-17 mediated corneal barrier disruption in dry eye. PLoS. One 7, e36822 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang, X. et al. CD8( + ) cells regulate the T helper-17 response in an experimental murine model of Sjogren syndrome. Mucosal. Immunol. 7, 417–427 (2014).

CAS  PubMed  Article  Google Scholar 

Khandelwal, P. et al. Ocular mucosal CD11b + and CD103 + mouse dendritic cells under normal conditions and in allergic immune responses. PloS One 8, e64193 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu, Q., Smith, C. W., Zhang, W., Burns, A. R. & Li, Z. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing. Am. J. Pathol. 181, 452–462 (2012).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bialasiewicz, A. A., Schaudig, U., Ma, J. X., Vieth, S. & Richard, G. Alpha/beta- and gamma/delta-T-cell-receptor-positive lymphocytes in healthy and inflamed human conjunctiva. Graefes Arch. Clin. Exp. Ophthalmol. 234, 467–471 (1996).

CAS  PubMed  Article  Google Scholar 

Arnous, R. et al. Tissue resident memory T cells inhabit the deep human conjunctiva. Sci. Rep. 12, 6077 (2022).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Alam, J. et al. Single-cell transcriptional profiling of murine conjunctival immune cells reveals distinct populations expressing homeostatic and regulatory genes. Mucosal Immunol. https://doi.org/10.1038/s41385-022-00507-w (2022).

Waddell, A., Vallance, J. E., Hummel, A., Alenghat, T. & Rosen, M. J. IL-33 Induces Murine Intestinal Goblet Cell Differentiation Indirectly via Innate Lymphoid Cell IL-13 Secretion. J. Immunol. 202, 598–607 (2019).

CAS  PubMed  Article  Google Scholar 

Li, Z., Burns, A. R., Rumbaut, R. E. & Smith, C. W. gamma delta T cells are necessary for platelet and neutrophil accumulation in limbal vessels and efficient epithelial repair after corneal abrasion. Am. J. Pathol. 171, 838–845 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

St Leger, A. J. et al. An Ocular Commensal Protects against Corneal Infection by Driving an Interleukin-17 Response from Mucosal gammadelta T Cells. Immunity 47, 148–158.e145 (2017).

PubMed Central  Article  CAS  Google Scholar 

Alam, J. et al. IL-17 Producing Lymphocytes Cause Dry Eye and Corneal Disease With Aging in RXRα Mutant Mouse. Front Med. 9, 849990 (2022).

Article  Google Scholar 

Shen, L., Barabino, S., Taylor, A. W. & Dana, M. R. Effect of the ocular microenvironment in regulating corneal dendritic cell maturation. Arch. Ophthalmol. 125, 908–915 (2007).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ahadome, S. D. et al. Classical dendritic cells mediate fibrosis directly via the retinoic acid pathway in severe eye allergy. JCI insight 1, https://doi.org/10.1172/jci.insight.87012 (2016).

Saban, D. R. et al. Deletion of Thrombospondin (TSP)-1 in Dendritic Cells (DC) of the Conjunctiva Exacerbates Allergic Conjunctivitis (AC). ARVO Meeting Abstracts 53, 1241 (2012).

Hamrah, P., Huq, S. O., Liu, Y., Zhang, Q. & Dana, M. R. Corneal immunity is mediated by heterogeneous population of antigen-presenting cells. J. Leukoc. Biol. 74, 172–178 (2003).

CAS  PubMed  Article  Google Scholar 

Jamali, A. et al. Characterization of Resident Corneal Plasmacytoid Dendritic Cells and Their Pivotal Role in Herpes Simplex Keratitis. Cell Rep. 32, 108099 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jamali, A. et al. Plasmacytoid dendritic cell

留言 (0)

沒有登入
gif