A novel Zn2-Cys6 transcription factor clcA contributes to copper homeostasis in Aspergillus fumigatus

Achard ME, Stafford SL, Bokil NJ, Chartres J, Bernhardt PV, Schembri MA, Sweet MJ, McEwan AG (2012) Copper redistribution in murine macrophages in response to Salmonella infection. Biochem J 444:51–57. https://doi.org/10.1042/BJ20112180

CAS  Article  PubMed  Google Scholar 

Amos B, Aurrecoechea C, Barba M, Barreto A, Basenko EY, Bazant W, Belnap R, Blevins AS, Bohme U, Brestelli J, Brunk BP, Caddick M, Callan D, Campbell L, Christensen MB, Christophides GK, Crouch K, Davis K, DeBarry J, Doherty R, Duan Y, Dunn M, Falke D, Fisher S, Flicek P, Fox B, Gajria B, Giraldo-Calderon GI, Harb OS, Harper E, Hertz-Fowler C, Hickman MJ, Howington C, Hu S, Humphrey J, Iodice J, Jones A, Judkins J, Kelly SA, Kissinger JC, Kwon DK, Lamoureux K, Lawson D, Li W, Lies K, Lodha D, Long J, MacCallum RM, Maslen G, McDowell MA, Nabrzyski J, Roos DS, Rund SSC, Schulman SW, Shanmugasundram A, Sitnik V, Spruill D, Starns D, Stoeckert CJ, Tomko SS, Wang H, Warrenfeltz S, Wieck R, Wilkinson PA, Xu L, Zheng J (2022) VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res 50:D898–D911. https://doi.org/10.1093/nar/gkab929

CAS  Article  PubMed  Google Scholar 

Anabosi D, Meir Z, Shadkchan Y, Handelman M, Abou-Kandil A, Yap A, Urlings D, Gold MS, Krappmann S, Haas H, Osherov N (2021) Transcriptional response of Aspergillus fumigatus to copper and the role of the Cu chaperones. Virulence 12:2186–2200. https://doi.org/10.1080/21505594.2021.1958057

CAS  Article  PubMed  PubMed Central  Google Scholar 

Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM (2008) Metal ions in biological catalysis: from enzyme databases to general principles. J Biol Inorg Chem 13:1205–1218. https://doi.org/10.1007/s00775-008-0404-5

CAS  Article  PubMed  Google Scholar 

Barber AE, Sae-Ong T, Kang K, Seelbinder B, Li J, Walther G, Panagiotou G, Kurzai O (2021) Aspergillus fumigatus pan-genome analysis identifies genetic variants associated with human infection. Nat Microbiol 6:1526–1536. https://doi.org/10.1038/s41564-021-00993-x

CAS  Article  PubMed  Google Scholar 

Blatzer M, Latgé JP (2017) Metal-homeostasis in the pathobiology of the opportunistic human fungal pathogen Aspergillus fumigatus. Curr Opin Microbiol 40:152–159. https://doi.org/10.1016/j.mib.2017.11.015

CAS  Article  PubMed  Google Scholar 

Bodey G, Vartivarian S (1989) Aspergillosis. Eur J Clin Microbiol Infect Dis 8:413–437. https://doi.org/10.1007/BF01964057

CAS  Article  PubMed  Google Scholar 

Bok JW, Chung D, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Kirby KA, Keller NP (2006) GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect Immun 74:6761–6768. https://doi.org/10.1128/IAI.00780-06

CAS  Article  PubMed  PubMed Central  Google Scholar 

Brakhage AA (2013) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32. https://doi.org/10.1038/nrmicro2916

CAS  Article  PubMed  Google Scholar 

Cai Z, Du W, Zeng Q, Long N, Dai C, Lu L (2017) Cu-sensing transcription factor Mac1 coordinates with the Ctr transporter family to regulate Cu acquisition and virulence in Aspergillus fumigatus. Fungal Genet Biol 107:31–43. https://doi.org/10.1016/j.fgb.2017.08.003

CAS  Article  PubMed  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

CAS  Article  PubMed  PubMed Central  Google Scholar 

CLSI (2017) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. In: CLSI standard M38, 3rd edn. Clinical and Laboratory Standards Institute, Wayne, PA. https://clsi.org/media/1894/m38ed3_sample.pdf

DeLano WL (2002) Pymol: An open-source molecular graphics tool. http://www.ccp4.ac.uk/newsletters/newsletter40/11_pymol.pdf

Ding C, Festa RA, Chen YL, Espart A, Palacios Ò, Espín J, Capdevila M, Atrian S, Heitman J, Thiele DJ (2013) Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe 13:265–276. https://doi.org/10.1016/j.chom.2013.02.002

CAS  Article  PubMed  PubMed Central  Google Scholar 

Festa RA, Thiele DJ (2011) Copper: an essential metal in biology. Curr Biol 21:R877–R883. https://doi.org/10.1016/j.cub.2011.09.040

CAS  Article  PubMed  PubMed Central  Google Scholar 

Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360:739–742. https://doi.org/10.1126/science.aap7999

CAS  Article  PubMed  Google Scholar 

Fraczek MG, Bromley M, Buied A, Moore CB, Rajendran R, Rautemaa R, Ramage G, Denning DW, Bowyer P (2013) The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 68:1486–1496. https://doi.org/10.1093/jac/dkt075

CAS  Article  PubMed  Google Scholar 

Furukawa T, van Rhijn N, Fraczek M, Gsaller F, Davies E, Carr P, Gago S, Fortune-Grant R, Rahman S, Gilsenan JM, Houlder E, Kowalski CH, Raj S, Paul S, Cook P, Parker JE, Kelly S, Cramer RA, Latgé JP, Moye-Rowley S, Bignell E, Bowyer P, Bromley MJ (2020) The negative cofactor 2 complex is a key regulator of drug resistance in Aspergillus fumigatus. Nat Commun 11:427. https://doi.org/10.1038/s41467-019-14191-1

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hagiwara D, Arai T, Takahashi H, Kusuya Y, Watanabe A, Kamei K (2018a) Non-cyp51A azole-resistant Aspergillus fumigatus isolates with mutation in HMG-CoA reductase. Emerg Infect Dis 24:1889–1897. https://doi.org/10.3201/eid2410.180730

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hagiwara D, Miura D, Shimizu K, Paul S, Ohba A, Gonoi T, Watanabe A, Kamei K, Shintani T, Moye-Rowley WS, Kawamoto S, Gomi K (2017) A novel Zn2-Cys6 transcription factor AtrR plays a key role in an azole resistance mechanism of Aspergillus fumigatus by co-regulating cyp51A and cdr1B expressions. PLoS Pathog 13:e1006096. https://doi.org/10.1371/journal.ppat.1006096

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hagiwara D, Takahashi H, Takagi H, Watanabe A, Kamei K (2018b) Heterogeneity in pathogenicity-related properties and stress tolerance in Aspergillus fumigatus clinical isolates. Med Mycol J 59:E63–E70. https://doi.org/10.3314/mmj.18-00007

CAS  Article  PubMed  Google Scholar 

Hagiwara D, Takahashi H, Watanabe A, Takahashi-Nakaguchi A, Kawamoto S, Kamei K, Gonoi T (2014) Whole-genome comparison of Aspergillus fumigatus strains serially isolated from patients with aspergillosis. J Clin Microbiol 52:4202–4209. https://doi.org/10.1128/JCM.01105-14

CAS  Article  PubMed  PubMed Central  Google Scholar 

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

CAS  Article  PubMed  PubMed Central  Google Scholar 

Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. https://doi.org/10.1093/nar/gkf436

CAS  Article  PubMed  PubMed Central  Google Scholar 

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

CAS  Article  PubMed  PubMed Central  Google Scholar 

Keller NP (2017) Heterogeneity confounds establishment of “a” model microbial strain. mBio 8:e00135-17. https://doi.org/10.1128/mBio.00135-17

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kikuchi K, Watanabe A, Ito J, Oku Y, Wuren T, Taguchi H, Yarita K, Muraosa Y, Yahiro M, Yaguchi T, Kamei K (2014) Antifungal susceptibility of Aspergillus fumigatus clinical isolates collected from various areas in Japan. J Infect Chemother 20:336–338. https://doi.org/10.1016/j.jiac.2014.01.003

CAS  Article  PubMed  Google Scholar 

Kowalski CH, Beattie SR, Fuller KK, McGurk EA, Tang YW, Hohl TM, Obar JJ, Cramer RA Jr (2016) Heterogeneity among isolates reveals that fitness in low oxygen correlates with Aspergillus fumigatus virulence. mBio 7:e01515-16. https://doi.org/10.1128/mBio.01515-16

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kowalski CH, Kerkaert JD, Liu KW, Bond MC, Hartmann R, Nadell CD, Stajich JE, Cramer RA (2019) Fungal biofilm morphology impacts hypoxia fitness and disease progression. Nat Microbiol 4:2430–2441. https://doi.org/10.1038/s41564-019-0558-7

CAS  Article  PubMed  PubMed Central  Google Scholar 

Krappmann S, Sasse C, Braus GH (2006) Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining-deficient genetic background. Eukaryot Cell 5:212–215. https://doi.org/10.1128/EC.5.1.212-215.2006

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kusuya Y, Hagiwara D, Sakai K, Yaguchi T, Gonoi T, Takahashi H (2017) Transcription factor Afmac1 controls copper import machinery in Aspergillus fumigatus. Curr Genet 63:777–789. https://doi.org/10.1007/s00294-017-0681-z

CAS  Article  PubMed  Google Scholar 

Latgé JP, Chamilos G (2019) Aspergillus fumigatus and aspergillosis in 2019. Clin Microbiol Rev 33:e00140-e218. https://doi.org/10.1128/CMR.00140-18

Article  PubMed  PubMed Central  Google Scholar 

Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. https://doi.org/10.1093/nar/gkz239

CAS  Article  PubMed 

留言 (0)

沒有登入
gif