Tips for efficiently maintaining pET expression plasmids

Aguilar Lucero, D., Cantoia, A., Ceccarelli, E.A., Rosano, G.L., 2021. Starting a new recombinant protein production project in Escherichia coli, in: Methods in Enzymology. Elsevier, pp. 3–18.

Baheri HR, Hill GA, Roesler WJ (2001) Modelling plasmid instability in batch and continuous fermentors. Biochem Eng J 8:45–50

Article  CAS  PubMed  Google Scholar 

Bentley WE, Mirjalili N, Andersen DC, Davis RH, Kompala DS (1990) Plasmid-encoded protein: The principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol Bioeng 35:668–681

Article  CAS  PubMed  Google Scholar 

Bolivar F, Rodriguez RL, Betlach MC, Boyer HW (1977) Construction and characterization of new cloning vehicles. I. Ampicillin-resistant derivatives of the plasmid pMB9. Gene 2:75–93

Article  CAS  PubMed  Google Scholar 

Carroll AC, Wong A (2018) Plasmid persistence: costs, benefits, and the plasmid paradox. Can J Microbiol 64:293–304

Article  CAS  PubMed  Google Scholar 

Chamberlin M, Ring J (1973) Characterization of T7-specific ribonucleic acid polymerase. 1. General properties of the enzymatic reaction and the template specificity of the enzyme. J Biol Chem 248:2235–2244

Article  CAS  PubMed  Google Scholar 

Chiang C-S, Bremer H (1988) Stability of pBR322-derived plasmids. Plasmid 20:207–220

Article  CAS  PubMed  Google Scholar 

Cumming AJ, Khananisho D, Harris R, Bayer CN, Nørholm MHH, Jamshidi S, Ilag LL, Daley DO (2022) Antibiotic-efficient genetic cassette for the TEM-1 β-lactamase that improves plasmid performance. ACS Synth Biol 11:241–253

Article  CAS  PubMed  PubMed Central  Google Scholar 

Daley DO, Rapp M, Granseth E, Melén K, Drew D, von Heijne G (2005) Global topology analysis of the Escherichia coli inner membrane proteome. Science 308:1321–1323

Article  CAS  PubMed  Google Scholar 

Dumon-Seignovert L, Cariot G, Vuillard L (2004) The toxicity of recombinant proteins in Escherichia coli: a comparison of overexpression in BL21(DE3), C41(DE3), and C43(DE3). Protein Expr Purif 37:203–206

Article  CAS  PubMed  Google Scholar 

Gad H, Koolmeister T, Jemth A-S, Eshtad S, Jacques SA, Ström CE, Svensson LM, Schultz N, Lundbäck T, Einarsdottir BO, Saleh A, Göktürk C, Baranczewski P, Svensson R, Berntsson RP-A, Gustafsson R, Strömberg K, Sanjiv K, Jacques-Cordonnier M-C, Desroses M, Gustavsson A-L, Olofsson R, Johansson F, Homan EJ, Loseva O, Bräutigam L, Johansson L, Höglund A, Hagenkort A, Pham T, Altun M, Gaugaz FZ, Vikingsson S, Evers B, Henriksson M, Vallin KSA, Wallner OA, Hammarström LGJ, Wiita E, Almlöf I, Kalderén C, Axelsson H, Djureinovic T, Puigvert JC, Häggblad M, Jeppsson F, Martens U, Lundin C, Lundgren B, Granelli I, Jensen AJ, Artursson P, Nilsson JA, Stenmark P, Scobie M, Berglund UW, Helleday T (2014) MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 508:215–221

Article  CAS  PubMed  Google Scholar 

Geissmann Q (2013) OpenCFU, a New free and open-source software to count cell colonies and other circular objects. PLoS ONE 8:e54072

Article  CAS  PubMed  PubMed Central  Google Scholar 

Golomb M, Chamberlin M (1974) Characterization of T7-specific ribonucleic acid polymerase. IV. Resolution of the major in vitro transcripts by gel electrophoresis. J Biol Chem 249:2858–2863

Article  CAS  PubMed  Google Scholar 

Heyde SAH, Nørholm MHH (2021) Tailoring the evolution of BL21(DE3) uncovers a key role for RNA stability in gene expression toxicity. Commun Biol 4:963

Article  CAS  PubMed Central  Google Scholar 

James J, Yarnall B, Koranteng A, Gibson J, Rahman T, Doyle DA (2021) Protein over-expression in Escherichia coli triggers adaptation analogous to antimicrobial resistance. Microb Cell Fact 20:13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kaderabkova N, Bharathwaj M, Furniss, RCD, Gonzalez D, Palmer T, Mavridou DAI, (2022) The biogenesis of β-lactamase enzymes. Microbiology 168.

Korpimäki T, Kurittu J, Karp M (2003) Surprisingly fast disappearance of beta-lactam selection pressure in cultivation as detected with novel biosensing approaches. J Microbiol Methods 53:37–42

Article  PubMed  Google Scholar 

Kwon S-K, Kim SK, Lee D-H, Kim JF (2015) Comparative genomics and experimental evolution of Escherichia coli BL21(DE3) strains reveal the landscape of toxicity escape from membrane protein overproduction. Sci Rep 5:16076

Article  CAS  PubMed Central  Google Scholar 

Mierendorf RC, Morris BB, Hammer B, Novy RE (1998) Expression and purification of recombinant proteins using the pET system. Methods Mol Med 13:257–292

CAS  PubMed  Google Scholar 

Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298

Article  CAS  PubMed  Google Scholar 

Novagen, 2005. pET System Manual 11th Edition.

Oka A, Sugisaki H, Takanami M (1981) Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 147:217–226

Article  CAS  Google Scholar 

Pan S, Malcolm BA (2000) Reduced background expression and improved plasmid stability with pET vectors in BL21 (DE3). Biotechniques 29:1234–1238

Article  CAS  PubMed  Google Scholar 

Popov M, Petrov S, Kirilov K, Nacheva G, Ivanov I (2009) Segregational Instability in E. Coli of expression plasmids carrying human interferon gamma gene and its 3’-End truncated variants. Biotechnol Biotechnol Equip 23:840–843

Article  Google Scholar 

Rosano GL, Morales ES, Ceccarelli EA (2019) New tools for recombinant protein production in Escherichia coli: A 5-year update. Protein Sci 28:1412–1422

Article  CAS  PubMed Central  Google Scholar 

Rosano GL, Ceccarelli EA, (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5.

Rosenberg AH, Lade BN, Dao-shan C, Lin S-W, Dunn JJ, Studier FW (1987) Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56:125–135

Article  CAS  PubMed  Google Scholar 

Schlegel S, Genevaux P, de Gier J-W (2015) De-convoluting the genetic adaptations of E. coli C41(DE3) in real time reveals how alleviating protein production stress improves yields. Cell Rep 10:1758–1766

Article  CAS  PubMed  Google Scholar 

Shilling PJ, Mirzadeh K, Cumming AJ, Widesheim M, Köck Z, Daley DO (2020) Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. Communications Biology 3:214

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sieben M, Steinhorn G, Müller C, Fuchs S, Ann Chin L, Regestein L, Büchs J (2016) Testing plasmid stability of Escherichia coli using the Continuously Operated Shaken BIOreactor System. Biotechnol Prog 32:1418–1425

Article  CAS  PubMed  Google Scholar 

Silva F, Queiroz JA, Domingues FC (2012) Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 30:691–708

Article  CAS  PubMed  Google Scholar 

Structural Genomics Consortium, Architecture et Fonction des Macromolécules Biologiques, Berkeley Structural Genomics Center, China Structural Genomics Consortium, Integrated Center for Structure and Function Innovation, Israel Structural Proteomics Center, Joint Center for Structural Genomics, Midwest Center for Structural Genomics, New York Structural GenomiX Research Center for Structural Genomics, Northeast Structural Genomics Consortium, Oxford Protein Production Facility, Protein Sample Production Facility, Max Delbrück Center for Molecular Medicine, RIKEN Structural Genomics/Proteomics Initiative, SPINE2-Complexes, 2008. Protein production and purification. Nat Methods 5, 135–146

Studier WF, Rosenberg, AH, Dunn JJ, Dubendorff JW, 1990. Use of T7 RNA polymerase to direct expression of cloned genes, in: Methods in Enzymology. Elsevier, pp. 60–89.

Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130

Article  CAS  PubMed  Google Scholar 

Sutcliffe JG (1979) Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harb Symp Quant Biol 43:77–90

Article  CAS  Google Scholar 

Umezawa H (1979) Studies on aminoglycoside antibiotics: enzymic mechanism of resistance and genetics. Jpn J Antibiot 32(Suppl):S1-14

CAS  PubMed  Google Scholar 

Watson JF, García-Nafría J (2019) In vivo DNA assembly using common laboratory bacteria: A re-emerging tool to simplify molecular cloning. J Biol Chem 294:15271–15281

Article  CAS  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif