Moving beyond descriptive studies: harnessing metabolomics to elucidate the molecular mechanisms underpinning host-microbiome phenotypes

Fettig, N. M. & Osborne, L. C. Direct and indirect effects of microbiota-derived metabolites on neuroinflammation in multiple sclerosis. Microbes Infect. 23, 104814 (2021).

CAS  PubMed  Article  Google Scholar 

Blacher, E., Levy, M., Tatirovsky, E. & Elinav, E. Microbiome-modulated metabolites at the interface of host immunity. J. Immunol. 198, 572–580 (2017).

CAS  PubMed  Article  Google Scholar 

Thursby, E. & Juge, N. Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836 (2017).

CAS  PubMed  Article  Google Scholar 

Pittayanon, R. et al. Gut microbiota in patients with irritable bowel syndrome—a systematic review. Gastroenterology 157, 97–108 (2019).

PubMed  Article  Google Scholar 

Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Baümler, A. J. & Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 535, 85–93 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019).

CAS  PubMed  Article  Google Scholar 

Groen, R. N., de Clercq, N. C., Nieuwdorp, M., Hoenders, H. J. R. & Groen, A. K. Gut microbiota, metabolism and psychopathology: a critical review and novel perspectives. Crit. Rev. Clin. Lab. Sci. 55, 283–293 (2018).

CAS  PubMed  Article  Google Scholar 

Flannigan, K. L. et al. An intact microbiota is required for the gastrointestinal toxicity of the immunosuppressant mycophenolate mofetil. J. Hear. Lung Transplant. 37, 1047–1059 (2018).

Article  Google Scholar 

Esquerre, N. et al. Colitis-induced microbial perturbation promotes postinflammatory visceral hypersensitivity. Cmgh 10, 225–244 (2020).

PubMed  PubMed Central  Google Scholar 

Behr, C. et al. Analysis of metabolome changes in the bile acid pool in feces and plasma of antibiotic-treated rats. Toxicol. Appl. Pharmacol. 363, 79–87 (2019).

CAS  PubMed  Article  Google Scholar 

Fröhlich, E. E. et al. Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain. Behav. Immun. 56, 140–155 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Zhang, J. D. et al. Berberine alleviates visceral hypersensitivity in rats by altering gut microbiome and suppressing spinal microglial activation. Acta Pharmacol. Sin. 42, 1821–1833 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kong, C. et al. Ketogenic diet alleviates colitis by reduction of colonic group 3 innate lymphoid cells through altering gut microbiome. Signal Transduct. Target. Ther. 6, 1–12 (2021).

Article  CAS  Google Scholar 

Shute, A. et al. Cooperation between host immunity and the gut bacteria is essential for helminth-evoked suppression of colitis. Microbiome 9, 1–18 (2021).

Article  CAS  Google Scholar 

Ye, J. et al. Metabolomics-guided hypothesis generation for mechanisms of intestinal protection by live biotherapeutic products. Biomolecules 11, 1–29 (2021).

Google Scholar 

Tong, M. et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. ISME J. 8, 2193–2206 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rothhammer, V. et al. Type i interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22, 586–597 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rothhammer, V. et al. Dynamic regulation of serum aryl hydrocarbon receptor agonists in MS. Neurol. Neuroimmunol. NeuroInflammation 4, 1–8 (2017).

Article  Google Scholar 

Blacher, E. et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 572, 474–480 (2019).

CAS  PubMed  Article  Google Scholar 

Hoffman, J. D. et al. Dietary inulin alters the gut microbiome, enhances systemic metabolism and reduces neuroinflammation in an APOE4 mouse model. PLoS One 14, 1–22 (2019).

Google Scholar 

Erny, D. et al. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 33, 2260–2276.e7 (2021).

CAS  PubMed  Article  Google Scholar 

Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019).

CAS  PubMed  Article  Google Scholar 

Gao, B. et al. Tracking polymicrobial metabolism in cystic fibrosis airways: pseudomonas aeruginosa metabolism and physiology are influenced by Rothia mucilaginosa-derived metabolites. mSphere 3, 1–6 (2018).

Article  Google Scholar 

Silveira, C. B. et al. Multi-omics study of keystone species in a cystic fibrosis microbiome. Int. J. Mol. Sci. 22, 1–15 (2021).

Google Scholar 

Quinn, R. A. et al. Biogeochemical forces shape the composition and physiology of polymicrobial communities in the cystic fibrosis lung. MBio 5, 1–13 (2014).

Article  Google Scholar 

Quinn, R. A. et al. A Winogradsky-based culture system shows an association between microbial fermentation and cystic fibrosis exacerbation. ISME J. 9, 1024–1038 (2015).

CAS  PubMed  Article  Google Scholar 

Henson, M. A., Orazi, G., Phalak, P. & O’Toole, G. A. Metabolic modeling of cystic fibrosis airway communities predicts mechanisms of pathogen dominance. mSystems 4, 1–20 (2019).

Article  Google Scholar 

Whiteson, K. L. et al. Breath gas metabolites and bacterial metagenomes from cystic fibrosis airways indicate active pH neutral 2,3-butanedione fermentation. ISME J. 8, 1247–1258 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).

CAS  PubMed  Article  Google Scholar 

Morgell, A. et al. Metabolic characterization of plasma and cyst fluid from cystic precursors to pancreatic cancer patients reveal metabolic signatures of bacterial infection. J. Proteome Res. 20, 2725–2738 (2021).

CAS  PubMed  Article  Google Scholar 

Paul, B. et al. Impact of genistein on the gut microbiome of humanized mice and its role in breast tumor inhibition. PLoS One 12, 1–20 (2017).

Google Scholar 

Nemet, I. et al. A cardiovascular disease-linked gut microbial metabolite acts via adrenergic receptors. Cell 180, 862–877.e22 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Taylor, M. R. et al. Vancomycin relieves mycophenolate mofetil–induced gastrointestinal toxicity by eliminating gut bacterial -glucuronidase activity. Sci. Adv. 5, 1–10 (2019).

Article  CAS  Google Scholar 

Klünemann, M. et al. Bioaccumulation of therapeutic drugs by human gut bacteria. Nature 597, 533–538 (2021).

PubMed  Article  CAS  Google Scholar 

Chaikham, P., Apichartsrangkoon, A., Jirarattanarangsri, W. & Wiele, T. Van de Influence of encapsulated probiotics combined with pressurized longan juice on colon microflora and their metabolic activities on the exposure to simulated dynamic gastrointestinal tract. Food Res. Int. 49, 133–142 (2012).

CAS  Article  Google Scholar 

Püngel, D. et al. Bifidobacterium breve UCC2003 exopolysaccharide modulates the early life microbiota by acting as a potential dietary substrate. Nutrients 12, 1–17 (2020).

Article  CAS  Google Scholar 

Marzorati, M. et al. Treatment with a spore-based probiotic containing five strains of Bacillus induced changes in the metabolic activity and community composition of the gut microbiota in a SHIME® model of the human gastrointestinal system. Food Res. Int. 149, 110676 (2021).

CAS  PubMed  Article  Google Scholar 

Kitamoto, S. et al. Dietary l-serine confers a competitive fitness advantage to Enterobacteriaceae in the inflamed gut. Nat. Microbiol. 5, 116–125 (2020).

CAS  PubMed  Article  Google Scholar 

Kim, H. J., Li, H., Collins, J. J. & Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl Acad. Sci. U.S.A. 113, E7–E15 (2016).

CAS  PubMed  Google Scholar 

Trapecar, M. et al. Gut-liver physiomimetics reveal paradoxical modulation of IBD-related inflammation by short-chain fatty acids. Cell Syst. 10, 223–239.e9 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

McDonald, D. et al. American gut: an open platform for citizen science microbiome research. mSystems 3, e00031–18 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Melnik, A. V. et al. Coupling targeted and untargeted mass spectrometry for metabolome-microbiome-wide association studies of human fecal samples. Anal. Chem. 89, 7549–7559 (2017).

留言 (0)

沒有登入
gif