Generation of nanoscopic membrane curvature for membrane trafficking

Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009).

CAS  PubMed  Article  Google Scholar 

Ishikawa, H. Formation of elaborate networks of T-system tubules in cultured skeletal muscle with special reference to the T-system formation. J. Cell Biol. 38, 51–66 (1968).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yeow, I. et al. EHD proteins cooperate to generate caveolar clusters and to maintain caveolae during repeated mechanical stress. Curr. Biol. 27, 2951–2962.e2955 (2017).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lo, H. P. et al. The caveolin–cavin system plays a conserved and critical role in mechanoprotection of skeletal muscle. J. Cell Biol. 210, 833–849 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Franzini-Armstrong, C. The relationship between form and function throughout the history of excitation–contraction coupling. J. Gen. Physiol. 150, 189–210 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lo, H. P. et al. Cavin4 interacts with Bin1 to promote T-tubule formation and stability in developing skeletal muscle. J. Cell Biol. https://doi.org/10.1083/JCB.201905065/VIDEO-1 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Westrate, L. M., Lee, J. E., Prinz, W. A. & Voeltz, G. K. Form follows function: the importance of endoplasmic reticulum shape. Annu. Rev. Biochem. 84, 791–811 (2015).

CAS  PubMed  Article  Google Scholar 

Guo, Y. et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175, 1430–1442.e1417 (2018).

CAS  PubMed  Article  Google Scholar 

Nixon-Abell, J. et al. Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER. Science 354, aaf3928 (2016).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Weigel, A. V. et al. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell https://doi.org/10.1016/j.cell.2021.03.035 (2021).

Article  PubMed  Google Scholar 

Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E. & Staehelin, L. A. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144, 1135–1149 (1999).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kalt, M. R. Mitochondrial pleiomorphism in sustentacular cells of Xenopus laevis. Anat. Rec. 182, 53–60 (1975).

CAS  PubMed  Article  Google Scholar 

Bornstein, S. R., Ehrhart-Bornstein, M., Guse-Behling, H. & Scherbaum, W. A. Structure and dynamics of adrenal mitochondria following stimulation with corticotropin releasing hormone. Anat. Rec. 234, 255–262 (1992).

CAS  PubMed  Article  Google Scholar 

Bussi, Y. et al. Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc. Natl Acad. Sci. USA 116, 22366–22375 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

De Matteis, M. A. & Luini, A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 9, 273–284 (2008).

PubMed  Article  CAS  Google Scholar 

Zimmerberg, J. & Kozlov, M. M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9–19 (2005).

Article  CAS  Google Scholar 

Omar, Y. A. D., Sahu, A., Sauer, R. A. & Mandadapu, K. K. Nonaxisymmetric shapes of biological membranes from locally induced curvature. Biophys. J. 119, 1065–1077 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Vasan, R., Rudraraju, S., Akamatsu, M., Garikipati, K. & Rangamani, P. A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier associated with membrane neck constriction. Soft Matter 16, 784–797 (2020).

CAS  PubMed  Article  Google Scholar 

Auddya, D. et al. Biomembranes undergo complex, non-axisymmetric deformations governed by Kirchhoff-Love kinematics and revealed by a three-dimensional computational framework. Proc. Math. Phys. Eng. Sci. 477, 20210246 (2021).

PubMed  PubMed Central  Google Scholar 

Faini, M., Beck, R., Wieland, F. T. & Briggs, J. A. G. Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol. 23, 279–288 (2013).

CAS  PubMed  Article  Google Scholar 

Parton, R. G., Tillu, V., McMahon, K. A. & Collins, B. M. Key phases in the formation of caveolae. Curr. Opin. Cell Biol. 71, 7–14 (2021).

CAS  PubMed  Article  Google Scholar 

Margolis, L. & Sadovsky, Y. The biology of extracellular vesicles: the known unknowns. PLoS Biol. 17, e3000363 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hu, J., Prinz, W. A. & Rapoport, T. A. Weaving the web of ER tubules. Cell 147, 1226–1231 (2011).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mattila, P. K. & Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446–454 (2008).

CAS  PubMed  Article  Google Scholar 

Cramer, L. P. & Mitchison, T. J. Investigation of the mechanism of retraction of the cell margin and rearward flow of nodules during mitotic cell rounding. Mol. Biol. Cell 8, 109–119 (1997).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Terasaki, M. et al. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 154, 285–296 (2013).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).

CAS  PubMed  Article  Google Scholar 

Shin, W. et al. Preformed Ω-profile closure and kiss-and-run mediate endocytosis and diverse endocytic modes in neuroendocrine chromaffin cells. Neuron 109, 3119–3134.e3115 (2021).

CAS  PubMed  Article  Google Scholar 

Parton, R. G. Caveolae: structure, function, and relationship to disease. Annu. Rev. Cell Dev. Biol. 34, 111–136 (2018).

CAS  PubMed  Article  Google Scholar 

Golani, G., Ariotti, N., Parton, R. G. & Kozlov, M. M. Membrane curvature and tension control the formation and collapse of caveolar superstructures. Dev. Cell 48, 523–538.e524 (2019).

CAS  PubMed  Article  Google Scholar 

Shemesh, T. et al. A model for the generation and interconversion of ER morphologies. Proc. Natl Acad. Sci. USA 111, E5243–E5251 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Schroeder, L. K. et al. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J. Cell Biol. 218, 83–96 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mcmahon, H. T. & Boucrot, E. Membrane curvature at a glance. J. Cell Sci. 128, 1065–1070 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bhatia, T., Christ, S., Steinkühler, J., Dimova, R. & Lipowsky, R. Simple sugars shape giant vesicles into multispheres with many membrane necks. Soft Matter 16, 1246–1258 (2020).

CAS  PubMed  Article  Google Scholar 

Bo, L. & Waugh, R. E. Determination of bilayer membrane bending stiffness by tether formation from giant, thin-walled vesicles. Biophys. J. 55, 509–517 (1989).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhao, Z. et al. Super-resolution imaging of highly curved membrane structures in giant vesicles encapsulating molecular condensates. Adv. Mater. https://doi.org/10.1002/adma.202106633 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Karimi, M. et al. Asymmetric ionic conditions generate large membrane curvatures. Nano Lett. 18, 7816–7821 (2018).

CAS  PubMed  Article  Google Scholar 

Has, C. & Das, S. L. Recent developments in membrane curvature sensing and induction by proteins. Biochim. Biophys. Acta Gen. Subj. 1865, 129971 (2021).

CAS  PubMed  Article 

留言 (0)

沒有登入
gif