Mechanisms of mitochondrial respiratory adaptation

Gilkerson, R. W., Selker, J. M. L. & Capaldi, R. A. The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett. 546, 355–358 (2003).

CAS  PubMed  Article  Google Scholar 

Deshpande, O. A. & Mohiuddin, S. S. Biochemistry, Oxidative Phophorylation (StatPearls, 2020).

Walker, J. E. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1–16 (2013).

CAS  PubMed  Article  Google Scholar 

Enerbäck, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

PubMed  Article  Google Scholar 

Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Nedergaard, J. & Cannon, B. Brown adipose tissue as a heat-producing thermoeffector. Handb. Clin. Neurol. 156, 137–152 (2018).

PubMed  Article  Google Scholar 

Lowell, B. B. & Spiegelman, B. M. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660 (2000).

CAS  PubMed  Article  Google Scholar 

Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Granger, D. N. & Kvietys, P. R. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 6, 524–551 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chouchani, E. T. et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature 532, 112–116 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bock, F. J. & Tait, S. W. G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 21, 85–100 (2020).

CAS  PubMed  Article  Google Scholar 

Giorgi, C., Marchi, S. & Pinton, P. The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19, 713–730 (2018).

CAS  PubMed  Article  Google Scholar 

Spinelli, J. B. & Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745–754 (2018).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Stephan, T. et al. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 39, e104105 (2020). This article, along with Kondadi et al. (2020), dissects the involvement of several MICOS subunits in cristae remodelling and dynamics using advanced microscopy techniques.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Frezza, C. et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126, 177–189 (2006).

CAS  PubMed  Article  Google Scholar 

Civiletto, G. et al. Opa1 overexpression ameliorates the phenotype of two mitochondrial disease mouse models. Cell Metab. 21, 845–854 (2015).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sustarsic, E. G. et al. Cardiolipin synthesis in brown and beige fat mitochondria is essential for systemic energy homeostasis. Cell Metab. 28, 159–174.e11 (2018). This work uncovers the lipidomic alterations in beige and brown adipose tissues essential for thermogenesis in mice.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Bennett, C. F. et al. Peroxisomal-derived ether phospholipids link nucleotides to respirasome assembly. Nat. Chem. Biol. 17, 703–710 (2021).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kondadi, A. K. et al. Cristae undergo continuous cycles of membrane remodelling in a MICOS -dependent manner. EMBO Rep. 21, e49776 (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Balsa, E. et al. ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Mol. Cell 74, 877–890.e6 (2019).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Latorre-Muro, P. et al. A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation. Cell Metab. 33, 598–614.e7 (2021). This article describes regulation of cristae formation by ER stress responses, along with Kato et al. (2020).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Giacomello, M., Pyakurel, A., Glytsou, C. & Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204–224 (2020).

CAS  PubMed  Article  Google Scholar 

Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998). This is the initial report detailing PGC1α as a transcriptional coactivator that binds nuclear receptors and promotes expression of mitochondrial genes.

CAS  PubMed  Article  Google Scholar 

Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

CAS  PubMed  Article  Google Scholar 

Holloszy, J. O. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J. Biol. Chem. 242, 2278–2282 (1967).

CAS  PubMed  Article  Google Scholar 

Handschin, C. et al. Skeletal muscle fiber-type switching, exercise intolerance, and myopathy in PGC-1α muscle-specific knock-out animals. J. Biol. Chem. 282, 30014–30021 (2007).

CAS  PubMed  Article  Google Scholar 

Couvillion, M. T., Soto, I. C., Shipkovenska, G. & Churchman, L. S. Synchronized mitochondrial and cytosolic translation programs. Nature 533, 499–503 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Soto, I. et al. Balanced mitochondrial and cytosolic translatomes underlie the biogenesis of human respiratory complexes. Preprint at bioRxiv https://doi.org/10.1101/2021.05.31.446345 (2021).

Article  Google Scholar 

Wang, C. et al. MITRAC15/COA1 promotes mitochondrial translation in a ND2 ribosome–nascent chain complex. EMBO Rep 21, e48833 (2020).

CAS  PubMed  Google Scholar 

Richter-Dennerlein, R. et al. Mitochondrial protein synthesis adapts to influx of nuclear-encoded protein. Cell 167, 471–483.e10 (2016). This article describes plasticity in translational rate from membrane-associated human mitochondrial ribosome–mRNA complexes depending on the import of nuclear-encoded complex IV subunits.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mick, D. U. et al. MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation. Cell 151, 1528–1541 (2012).

CAS  PubMed  Article  Google Scholar 

Rath, S. et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 49, D1541–D1547 (2021).

CAS  PubMed  Article  Google Scholar 

Rensvold, J. W. et al. Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis. Cell Rep. 3, 237–245 (2013).

CAS  PubMed  Article  Google Scholar 

Holloszy, J. O. Regulation by exercise of skeletal muscle content of mitochondria and GLUT4. J. Physiol. Pharmacol. 59, 5–18 (2008).

PubMed  Google Scholar 

Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

CAS  PubMed  Article  Google Scholar 

Lai, L. et al. Transcriptional coactivators PGC-lα and PGC-lβ control overlapping programs required for perinatal maturation of the heart. Genes Dev. 22, 1948–1961 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ciron, C. et al. PGC-1α activity in nigral dopamine neurons determines vulnerability to α-synuclein. Acta Neuropathol. Commun. 3, 16 (2015).

PubMed  PubMed Central  Article  CAS  Google Scholar 

Jiang, H. et al. Adult conditional knockout of PGC-1α leads to loss of dopamine neurons. eNeuro 3, ENEURO.0183-16.2016 (2016).

PubMed  PubMed Central  Article  Google Scholar 

Tran, M. T. et al. PGC1α drives NAD biosynthesis linking oxidative metabolism to renal protection. Nature 531, 528–532 (2016).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Mutlu, B. & Puigserver, P. GCN5 acetyltransferase in cellular energetic and metabolic processes. Biochim. Biophys. Acta Gene Regul. Mech. 1864, 194626 (2021).

留言 (0)

沒有登入
gif