NF-κB, A Potential Therapeutic Target in Cardiovascular Diseases

Zhang Q, Lenardo MJ, Baltimore D. 30 Years of NF-κB: a blossoming of relevance to human pathobiology. Cell. 2017;168:37–57.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ghosh S, Hayden MS. New regulators of NF-kappaB in inflammation. Nat Rev Immunol. 2008;8:837–48.

CAS  PubMed  Article  Google Scholar 

Israel A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2010;2:a000158.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Yu H, Lin L, Zhang Z, et al. Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5:209.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gong T, Liu L, Jiang W, et al. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat Rev Immunol. 2020;20:95–112.

CAS  PubMed  Article  Google Scholar 

Hayden MS, Ghosh S. Regulation of NF-kappaB by TNF family cytokines. Semin Immunol. 2014;26:253–66.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Dejardin E, Droin NM, Delhase M, et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity. 2002;17:525–35.

CAS  PubMed  Article  Google Scholar 

Tang T, Cheng X, Truong B, et al. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther. 2021;219:107709.

CAS  PubMed  Article  Google Scholar 

Rao P, Hayden MS, Long M, et al. IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response. Nature. 2010;466:1115–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sun SC. Non-canonical NF-kappaB signaling pathway. Cell Res. 2011;21:71–85.

CAS  PubMed  Article  Google Scholar 

Cohen P, Strickson S. The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death Differ. 2017;24:1153–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119:651–65.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Hashem RM, Mohamed RH, Abo-EI-matty DM. Effect of curcumin on TNFR2 and TRAF2 in unilateral ureteral obstruction in rats. Nutrition. 2016;32:478–85.

CAS  PubMed  Article  Google Scholar 

Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995;81:495–504.

CAS  PubMed  Article  Google Scholar 

Xia Z, Sun L, Chen X, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature. 2009;461:114–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Chen Z. Ubiquitination in signaling to and activation of IKK. Immunol Rev. 2012;246:95–106.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Wesche H, Henzel WJ, Shillinglaw W, et al. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity. 1997;7:837–47.

CAS  PubMed  Article  Google Scholar 

Shi JH, Sun SC. TCR signaling to NF-κB and mTORC1: expanding roles of the CARMA1 complex. Mol Immunol. 2015;68:546–57.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Malekmohammad K, Bezsonov EE, Rafieian-Kopaei M. Role of lipid accumulation and inflammation in atherosclerosis: focus on molecular and cellular mechanisms. Front Cardiovasc Med. 2021;8:707529.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rehues P, Rodríguez M, Álvarez J, et al. The role of shear stress in the pathogenesis of atherosclerosis. Biomolecules. 2021;12:47.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Yu X, Zheng X, Tang C. Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis. Adv Clin Chem. 2015;70:1–30.

CAS  PubMed  Article  Google Scholar 

Alfaddagh A, Martin SS, Leucker TM, et al. Inflammation and cardiovascular disease: From mechanisms to therapeutics. Am J Pre Cardiol. 2020;4:100130.

Article  Google Scholar 

De Winther MP, Kanters E, Kraal G, et al. Nuclear factor κB signaling in atherogenesis. Arterioscler Thromb Vasc Biol. 2005;25:904–14.

PubMed  Article  CAS  Google Scholar 

Lamon BD, Hajjar DP. Inflammation at the molecular interface of atherogenesis: an anthropological journey. Am J Pathol. 2008;173:1253–64.

PubMed  PubMed Central  Article  Google Scholar 

Björkbacka H, Kunjathoor VV, Moore KJ, et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nat Med. 2004;10:416–21.

PubMed  Article  CAS  Google Scholar 

Mohan S, Mohan N, Sprague EA. Differential activation of NF-kappa B in human aortic endothelial cells conditioned to specific flow environments. Am J Physiol. 1997;273(2 Pt 1):C572–8.

Zhuang J, Peng W, Li H, et al. Inhibitory effects of vinpocetine on the progression of atherosclerosis are mediated by Akt/NF-κB dependent mechanisms in apoE-/-mice. PLoS One. 2013;8:e82509.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Yao Y, Wang Y, Zhang Y, et al. Klotho ameliorates oxidized low density lipoprotein (ox-LDL)-induced oxidative stress via regulating LOX-1 and PI3K/Akt/eNOS pathways. Lipids Health Dis. 2017;16:77.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Piqueras L, Sanz MJ. Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox-signaling pathways. Free Radic Biol Med. 2020;157:38–54.

CAS  PubMed  Article  Google Scholar 

Wang Q, Tang X, Yenari MA. The inflammatory response in stroke. J Neuroimmunol. 2007;184:53–68.

CAS  PubMed  Article  Google Scholar 

Kattoor AJ, Goel A, Mehta JL. LOX-1: regulation, signaling and its role in atherosclerosis. Antioxidants (Basel). 2019;8:218.

CAS  Article  Google Scholar 

Sukhorukov VN, Khotina VA, Chegodaev YS, et al. Lipid metabolism in macrophages: focus on atherosclerosis. Biomedicines. 2020;8:262.

CAS  PubMed Central  Article  Google Scholar 

Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Exp Mol Med. 2014;46:e99.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lind L. Circulating markers of inflammation and atherosclerosis. Atherosclerosis. 2003;169:203–14.

CAS  PubMed  Article  Google Scholar 

Brand K, Page S, Rogler G, et al. Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion. J Clin Invest. 1996;97:1715–22.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Menzel M, Kosinski J, Uller L, et al. Rhinovirus-induced IFNβ expression is NFκB-dependent and regulated by the macrophage microenvironment. Sci Rep. 2019;9:13394.

PubMed  PubMed Central  Article  CAS  Google Scholar 

Bond M, Fabunmi RP, Baker AH, et al. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: an absolute requirement for transcription factor NF-κB. FEBS Lett. 1998;435:29–34.

CAS  PubMed  Article  Google Scholar 

Luttun A, Lutgens E, Manderveld A, et al. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation. 2004;109:1408–14.

CAS  PubMed  Article  Google Scholar 

Kiyan Y, Tkachuk S, Hilfiker-Kleiner D, et al. oxLDL induces inflammatory responses in vascular smooth muscle cells via urokinase receptor association with CD36 and TLR4. J Mol Cell Cardiol. 2014;66:72–82.

CAS  PubMed  Article  Google Scholar 

留言 (0)

沒有登入
gif