Cardiovascular Mechano-Epigenetics: Force-Dependent Regulation of Histone Modifications and Gene Regulation

Waddington CH. Canalization of development and the inheritance of acquired characters. Nature. 1942;150:563–5.

Article  Google Scholar 

Shi Y, Zhang H, Huang S, et al. Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther. 2022;7(1):200.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warton K, Mahon KL, Samimi G. Methylated circulating tumor DNA in blood: power in cancer prognosis and response. Endocr Relat Cancer. 2016;23(3):R157–71.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumagai T, Akagi T, Desmond JC, et al. Epigenetic regulation and molecular characterization of C/EBPalpha in pancreatic cancer cells. Int J Cancer. 2009;124(4):827–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia H, Morris CD, Williams RM, Loring JF, Thomas EA. HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A. 2015;112(1):E56-64.

Article  CAS  PubMed  Google Scholar 

Abdolmaleky HM, Zhou JR, Thiagalingam S, Smith CL. Epigenetic and pharmacoepigenomic studies of major psychoses and potentials for therapeutics. Pharmacogenomics. 2008;9(12):1809–23.

Article  CAS  PubMed  Google Scholar 

Greer JM, McCombe PA. The role of epigenetic mechanisms and processes in autoimmune disorders. Biologics. 2012;6:307–27.

CAS  PubMed  PubMed Central  Google Scholar 

Iskratsch T, Wolfenson H, Sheetz MP. Appreciating force and shape-the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol. 2014;15(12):825–33.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sit B, Gutmann D, Iskratsch T. Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing. J Muscle Res Cell Motil. 2019;40(2):197–209.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ward M, Iskratsch T. Mix and (mis-)match – The mechanosensing machinery in the changing environment of the developing, healthy adult and diseased heart. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2020;1867(3):118436

Lucitti JL, Jones EA, Huang C, Chen J, Fraser SE, Dickinson ME. Vascular remodeling of the mouse yolk sac requires hemodynamic force. Development. 2007;134(18):3317–26.

Article  CAS  PubMed  Google Scholar 

Swiatlowska P, Sit B, Feng Z, et al. Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching. Sci Adv. 2022;8(15):eabm3471.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bertillot F, Miroshnikova YA, Wickstrom SA. SnapShot: mechanotransduction in the nucleus. Cell. 2022;185(19):3638-e1.

Article  CAS  PubMed  Google Scholar 

Nava MM, Miroshnikova YA, Biggs LC, et al. Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell. 2020;181(4):800-17 e22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Rodriguez-Mateo C, Huang P, et al. Hairless regulates heterochromatin maintenance and muscle stem cell function as a histone demethylase antagonist. Proc Natl Acad Sci U S A. 2021;118(37):e2025281118.

Barnes CE, English DM, Cowley SM. Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays Biochem. 2019;63(1):97–107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koester J, Miroshnikova YA, Ghatak S, et al. Niche stiffening compromises hair follicle stem cell potential during ageing by reducing bivalent promoter accessibility. Nat Cell Biol. 2021;23(7):771–81.

Article  CAS  PubMed  Google Scholar 

Pundel OJ, Blowes LM, Connelly JT. Extracellular adhesive cues physically define nucleolar structure and function. Adv Sci (Weinh). 2022;9(10): e2105545.

Article  PubMed  Google Scholar 

Le HQ, Ghatak S, Yeung CY, et al. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat Cell Biol. 2016;18(8):864–75.

Article  CAS  PubMed  Google Scholar 

Tajik A, Zhang Y, Wei F, et al. Transcription upregulation via force-induced direct stretching of chromatin. Nat Mater. 2016;15(12):1287–96.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Song Y, Soto J, Chen B, et al. Transient nuclear deformation primes epigenetic state and promotes cell reprogramming. Nat Mater. 2022;21(10):1191–1199

Hahn C, Schwartz MA. Mechanotransduction in vascular physiology and atherogenesis. Nat Rev Mol Cell Biol. 2009;10(1):53–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

He M, Huang TS, Li S, et al. Atheroprotective flow upregulates ITPR3 (Inositol 1,4,5-trisphosphate receptor 3) in vascular endothelium via KLF4 (Kruppel-like factor 4)-mediated histone modifications. Arterioscler Thromb Vasc Biol. 2019;39(5):902–14.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andueza A, Kumar S, Kim J, et al. Endothelial Reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 2020;33(11): 108491.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen LJ, Wei SY, Chiu JJ. Mechanical regulation of epigenetics in vascular biology and pathobiology. J Cell Mol Med. 2013;17(4):437–48.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zeng L, Zhang Y, Chien S, Liu X, Shyy JY. The role of p53 deacetylation in p21Waf1 regulation by laminar flow. J Biol Chem. 2003;278(27):24594–9.

Article  CAS  PubMed  Google Scholar 

Zeng L, Xiao Q, Margariti A, et al. HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J Cell Biol. 2006;174(7):1059–69.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lee DY, Lee CI, Lin TE, et al. Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow. Proc Natl Acad Sci U S A. 2012;109(6):1967–72.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yan ZQ, Yao QP, Zhang ML, et al. Histone deacetylases modulate vascular smooth muscle cell migration induced by cyclic mechanical strain. J Biomech. 2009;42(7):945–8.

Article  PubMed  Google Scholar 

Wang YH, Yan ZQ, Qi YX, et al. Normal shear stress and vascular smooth muscle cells modulate migration of endothelial cells through histone deacetylase 6 activation and tubulin acetylation. Ann Biomed Eng. 2010;38(3):729–37.

Article  PubMed  Google Scholar 

Wang W, Ha CH, Jhun BS, Wong C, Jain MK, Jin ZG. Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood. 2010;115(14):2971–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elibol B, Kilic U. High Levels of SIRT1 Expression as a Protective mechanism against disease-related conditions. Front Endocrinol (Lausanne). 2018;9:614.

Article  PubMed  Google Scholar 

Kitada M, Ogura Y, Koya D. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging (Albany NY). 2016;8(10):2290–307.

Article  CAS  PubMed  Google Scholar 

Yuan P, Hu Q, He X, et al. Laminar flow inhibits the Hippo/YAP pathway via autophagy and SIRT1-mediated deacetylation against atherosclerosis. Cell Death Dis. 2020;11(2):141.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen W, Bacanamwo M, Harrison DG. Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitric-oxide synthase mRNA transcription. J Biol Chem. 2008;283(24):16293–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gomez D, Owens GK. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res. 2012;95(2):156–64.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basatemur GL, Jorgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–44.

Article  PubMed  Google Scholar 

Newman AAC, Serbulea V, Baylis RA, et al. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRbeta and bioenergetic mechanisms. Nat Metab. 2021;3(2):166–81.

Article  CAS 

留言 (0)

沒有登入
gif