Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action

AboTaleb HA, Alghamdi BS (2020) Neuroprotective effects of melatonin during demyelination and remyelination stages in a mouse model of multiple sclerosis. J Mol Neurosci 70:386–402. https://doi.org/10.1007/s12031-019-01425-6

CAS  Article  Google Scholar 

Acuña-Castroviejo D, Martín M, Macías M et al (2001) Melatonin, mitochondria, and cellular bioenergetics. J Pineal Res 30:65–74. https://doi.org/10.1034/J.1600-079X.2001.300201.X

Article  Google Scholar 

Adamczyk-Sowa M, Sowa P, Adamczyk J et al (2016a) Effect of melatonin supplementation on plasma lipid hydroperoxides, homocysteine concentration and chronic fatigue syndrome in multiple sclerosis patients treated with interferons-beta and mitoxantrone. J Physiol Pharmacol 67:235–242

CAS  Google Scholar 

Adamczyk-Sowa M, Sowa P, Mucha S et al (2016) Changes in serum ceruloplasmin levels based on immunomodulatory treatments and melatonin supplementation in multiple sclerosis patients. Med Sci Monit. https://doi.org/10.12659/MSM.895702

Article  PubMed Central  Google Scholar 

Adamczyk-Sowa M, Galiniak S, Zyracka E et al (2017) Oxidative modification of blood serum proteins in multiple sclerosis after interferon beta and melatonin treatment. Oxid Med Cell Longev. https://doi.org/10.1155/2017/7905148

Article  PubMed Central  Google Scholar 

Agüera E, Caballero-Villarraso J, Feijóo M et al (2020) Clinical and neurochemical effects of transcranial magnetic stimulation (TMS) in multiple sclerosis: a study protocol for a randomized clinical trial. Front Neurol. https://doi.org/10.3389/fneur.2020.00750

Article  PubMed Central  Google Scholar 

Akpinar Z, Tokgöz S, Gökbel H et al (2008) The association of nocturnal serum melatonin levels with major depression in patients with acute multiple sclerosis. Psychiatry Res 161:253–257. https://doi.org/10.1016/j.psychres.2007.11.022

CAS  Article  Google Scholar 

Albazal A, Delshad AA, Roghani M (2021) Melatonin reverses cognitive deficits in streptozotocin-induced type 1 diabetes in the rat through attenuation of oxidative stress and inflammation. J Chem Neuroanat. https://doi.org/10.1016/j.jchemneu.2020.101902

Article  Google Scholar 

Alghamdi BS, AboTaleb HA (2020) Melatonin improves memory defects in a mouse model of multiple sclerosis by up-regulating cAMP-response element-binding protein and synapse-associated proteins in the prefrontal cortex. J Integr Neurosci 19:229–237. https://doi.org/10.31083/j.jin.2020.02.32

Article  Google Scholar 

Álvarez-Sánchez N, Cruz-Chamorro I, López-González A et al (2015) Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance. Brain Behav Immun 50:101–114. https://doi.org/10.1016/j.bbi.2015.06.021

CAS  Article  Google Scholar 

Álvarez-Sánchez N, Cruz-Chamorro I, Díaz-Sánchez M et al (2017) Melatonin reduces inflammatory response in peripheral T helper lymphocytes from relapsing-remitting multiple sclerosis patients. J Pineal Res. https://doi.org/10.1111/jpi.12442

Article  Google Scholar 

Anderson G, Reiter RJ (2020) Melatonin: roles in influenza, Covid-19, and other viral infections. Rev Med Virol. https://doi.org/10.1002/rmv.2109

Article  PubMed Central  Google Scholar 

Anderson G, Rodriguez M, Reiter RJ (2019) Multiple sclerosis: melatonin, orexin, and ceramide interact with platelet activation coagulation factors and gut-microbiome-derived butyrate in the circadian dysregulation of mitochondria in glia and immune cells. Int J Mol Sci 20(21):5500. https://doi.org/10.3390/ijms20215500

CAS  Article  Google Scholar 

Anderson G, Carbone A, Mazzoccoli G (2020) Aryl hydrocarbon receptor role in co-ordinating sars-cov-2 entry and symptomatology: linking cytotoxicity changes in covid-19 and cancers; modulation by racial discrimination stress. Biology (basel) 9:1–31. https://doi.org/10.3390/biology9090249

CAS  Article  Google Scholar 

Ascherio A (2013) Environmental factors in multiple sclerosis. Expert Rev Neurother 13(12 Suppl):3–9. https://doi.org/10.1586/14737175.2013.865866

CAS  Article  Google Scholar 

Ascherio A, Munger KL, Simon KC (2010) Vitamin D and multiple sclerosis. Lancet Neurol 9:599–612

Article  Google Scholar 

Avila M, Bansal A, Culberson J, Peiris ANN (2018) The role of sex hormones in multiple sclerosis. Eur Neurol 80:93–99. https://doi.org/10.1159/000494262

CAS  Article  Google Scholar 

Azoulay D, Vachapova V, Shihman B et al (2005) Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 167:215–218. https://doi.org/10.1016/j.jneuroim.2005.07.001

CAS  Article  Google Scholar 

Azoulay D, Urshansky N, Karni A (2008) Low and dysregulated BDNF secretion from immune cells of MS patients is related to reduced neuroprotection. J Neuroimmunol 195:186–193. https://doi.org/10.1016/j.jneuroim.2008.01.010

CAS  Article  Google Scholar 

Bahamonde C, Conde C, Agüera E et al (2014) Elevated melatonin levels in natalizumab-treated female patients with relapsing-remitting multiple sclerosis: relationship to oxidative stress. Eur J Pharmacol 730:26–30. https://doi.org/10.1016/j.ejphar.2014.02.020

CAS  Article  Google Scholar 

Basoli V, Santaniello S, Cruciani S et al (2017) Melatonin and vitamin D interfere with the adipogenic fate of adipose-derived stem cells. Int J Mol Sci 18:981. https://doi.org/10.3390/ijms18050981

CAS  Article  PubMed Central  Google Scholar 

Beriwal N, Namgyal T, Sangay P, Al Quraan AM (2019) Role of immune-pineal axis in neurodegenerative diseases, unraveling novel hybrid dark hormone therapies. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01190

Article  PubMed Central  Google Scholar 

Bove R, Gilmore W (2018) Hormones and MS: Risk factors, biomarkers, and therapeutic targets. Mult Scler. https://doi.org/10.1177/1352458517737396

Article  PubMed Central  Google Scholar 

Bradshaw MJ, Holick MF, Stankiewicz JM (2020) Vitamin D and multiple sclerosis. Curr Clin Neurol. https://doi.org/10.1007/978-3-030-24436-1_10

Article  Google Scholar 

Camara-Lemarroy CR, Metz L, Meddings JB et al (2018) The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain 141:1900–1916. https://doi.org/10.1093/brain/awy131

Article  PubMed Central  Google Scholar 

Campbell GR, Mahad DJ (2011) Mitochondria as crucial players in demyelinated axons: lessons from neuropathology and experimental demyelination. Autoimmune Dis. https://doi.org/10.4061/2011/262847

Article  PubMed Central  Google Scholar 

Campbell GR, Ziabreva I, Reeve AK et al (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol. https://doi.org/10.1002/ana.22109

Article  PubMed Central  Google Scholar 

Cardinali DP (2019) Melatonin: clinical perspectives in neurodegeneration. Front Endocrinol (Lausanne). https://doi.org/10.3389/fendo.2019.00480

Article  Google Scholar 

Carrascal L, Nunez-Abades P, Ayala A, Cano M (2018) Role of melatonin in the inflammatory process and its therapeutic potential. Curr Pharm Des 24:1563–1588. https://doi.org/10.2174/1381612824666180426112832

CAS  Article  Google Scholar 

Carrillo-Vico A, Lardone PJ, Naji L et al (2005) Beneficial pleiotropic actions of melatonin in an experimental model of septic shock in mice: regulation of pro-/anti-inflammatory cytokine network, protection against oxidative damage and anti-apoptotic effects. J Pineal Res 39:400–408. https://doi.org/10.1111/j.1600-079X.2005.00265.x

CAS  Article  Google Scholar 

Carvalho AN, Lim JL, Nijland PG et al (2014) Glutathione in multiple sclerosis: more than just an antioxidant? Mult Scler J 20:1425–1431. https://doi.org/10.1177/1352458514533400

CAS  Article  Google Scholar 

Castro LMR, Gallant M, Niles LP (2005) Novel targets for valproic acid: up-regulation of melatonin receptors and neurotrophic factors in C6 glioma cells. J Neurochem 95:1227–1236. https://doi.org/10.1111/j.1471-4159.2005.03457.x

CAS  Article  Google Scholar 

Chang C, Huang H, Lee H et al (2012) Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and α-synuclein aggregation. J Pineal Res 52:312–321. https://doi.org/10.1111/J.1600-079X.2011.00945.X

CAS  Article  Google Scholar 

Chang T, Niu C, Sun C et al (2020) Melatonin exerts immunoregulatory effects by balancing peripheral effector and regulatory T helper cells in myasthenia gravis. Aging (Albany NY) 12:21147–21160. https://doi.org/10.18632/aging.103785

CAS  Article  Google Scholar 

Chen J, Chia N, Kalari KR et al (2016) Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. https://doi.org/10.1038/srep28484

Article  PubMed Central  Google Scholar 

Chen D, Zhang T, Lee TH (2020) Cellular mechanisms of melatonin: Insight from neurodegenerative diseases. Biomolecules 10:1–26. https://doi.org/10.3390/biom10081158

Article  Google Scholar 

Chisu V, Manca P, Lepore G et al (2006) Testosterone induces neuroprotection from oxidative stress. Effects on catalase activity and 3-nitro-L-tyrosine incorporation into α-tubulin in a mouse neuroblastoma cell line. Arch Ital Biol 144:63–73. https://doi.org/10.4449/aib.v144i2.882

CAS  Article  Google Scholar 

Chitimus DM, Popescu MR, Voiculescu SE et al (2020) Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules 10:1–28. https://doi.org/10.3390/biom10091211

CAS  Article  Google Scholar 

Chitnis T (2013) Role of puberty in multiple sclerosis risk and course. Clin Immunol 149:192–200. https://doi.org/10.1016/J.CLIM.2013.03.014

CAS  Article  Google Scholar 

Claustrat B, Leston J (2015) Melatonin: physiological effects in humans. Neurochirurgie 61:77–84. https://doi.org/10.1016/J.NEUCHI.2015.03.002

CAS  Article  Google Scholar 

Claustrat B, Brun J, Chazot G (2005) The basic physiology and pathophysiology of melatonin. Sleep Med Rev 9:11–24. https://doi.org/10.1016/j.smrv.2004.08.001

Article  Google Scholar 

Cobianchi S, Arbat-Plana A, Lopez-Alvarez VM, Navarro X (2016) Neuroprotective effects of exercise treatments after injury: the dual role of neurotrophic factors. Curr Neuropharmacol 15:495–518. https://doi.org/10.2174/1570159x14666160330105132

CAS  Article  Google Scholar 

Comai S, Gobbi G (2014) Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: a novel target in psychopharmacology. J Psychiatry Neurosci 39(1):6–21. https://doi.org/10.1503/jpn.130009

Article  PubMed Central  Google Scholar 

Comini-Frota ER, Rodrigues DH, Miranda EC et al (2012) Serum levels of brain-derived neurotrophic factor correlate with the number of T2 MRI lesions in multiple sclerosis. Brazilian J Med Biol Res 45:68–71. https://doi.org/10.1590/S0100-879X2011007500165

CAS  Article  Google Scholar 

Compston A, Coles A (2002) Multiple sclerosis. Lancet 359:1221–1231. https://doi.org/10.1016/S0140-6736(02)08220-X

Article 

留言 (0)

沒有登入
gif