Elevated number of IL-21+ TFH and CD86+CD38+ B cells in blood of renal transplant recipients with AMR under conventional immuno-suppression

1. Wolfe, RA, Ashby, VB, Milford, EL, et al. (1999) Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. New England Journal of Medicine 341: 1725–1730. DOI: 10.1056/NEJM199912023412303.
Google Scholar | Crossref | Medline | ISI2. Loupy, A, Lefaucheur, C, Vernerey, D, et al. (2013) Complement-binding anti-HLA antibodies and kidney-allograft survival. New England Journal of Medicine 369: 1215–1226. DOI: 10.1056/NEJMoa1302506.
Google Scholar | Crossref | Medline | ISI3. Halloran, PF, Pereira, AB, Chang, J, et al. (2013) Potential impact of microarray diagnosis of T cell-mediated rejection in kidney transplants: The INTERCOM study. American Journal of Transplantation 13: 2352–2363. DOI: 10.1111/ajt.12387.
Google Scholar | Crossref | Medline4. Clatworthy, MR (2013) B cell responses to allograft-more common than we thought? American Journal of Transplantation 13: 1629–1630. DOI: 10.1111/ajt.12309.
Google Scholar | Crossref | Medline5. Gorbacheva, V, Fan, R, Fairchild, RL, et al. (2016) Memory CD4 T cells induce antibody-mediated rejection of renal allografts. Journal of the American Society of Nephrology 27: 3299–3307. DOI: 10.1681/ASN.2015080848.
Google Scholar | Crossref | Medline6. Smeekens, SP, van den Hoogen, MWF, Kamburova, EG, et al. (2013) The effects of in vivo B-cell depleting therapy on ex-vivo cytokine production. Transplant Immunology 28: 183–188. DOI: 10.1016/j.trim.2013.04.008.
Google Scholar | Crossref | Medline7. Crotty, S (2011) Follicular helper CD4 T cells (TFH). Annual Review of Immunology 29: 621–663. DOI: 10.1146/annurev-immunol-031210-101400.
Google Scholar | Crossref | Medline | ISI8. Nutt, SL, Tarlinton, DM (2011) Germinal center B and follicular helper T cells: Siblings, cousins or just good friends? Nature Immunology 12: 472–477. DOI: 10.1038/ni.2019.
Google Scholar | Crossref | Medline9. Schmitt, N, Ueno, H (2013) Blood Tfh cells come with colors. Immunity 39: 629–630. DOI: 10.1016/j.immuni.2013.09.011.
Google Scholar | Crossref | Medline | ISI10. Crotty, S (2014) T follicular helper cell differentiation, function, and roles in disease. Immunity 41: 529–542. DOI: 10.1016/j.immuni.2014.10.004.
Google Scholar | Crossref | Medline | ISI11. Leonard, WJ, Spolski, R (2005) Interleukin-21: a modulator of lymphoid proliferation, apoptosis and differentiation. Nature Reviews Immunology 5: 688–698. DOI: 10.1038/nri1688.
Google Scholar | Crossref | Medline | ISI12. Chen, C-C, Koenig, A, Saison, C, et al. (2018) CD4+ T cell help is mandatory for naive and memory donor-specific antibody responses: impact of therapeutic immunosuppression. Frontiers in Immunology 9: 275. DOI: 10.3389/fimmu.2018.00275.
Google Scholar | Crossref | Medline13. Jiang, S, Herrera, O, Lechler, RI (2004) New spectrum of allorecognition pathways: Implications for graft rejection and transplantation tolerance. Current Opinion in Immunology 16: 550–557. DOI: 10.1016/j.coi.2004.07.011.
Google Scholar | Crossref | Medline14. Soltaninejad, E, Nicknam, MH, Nafar, M, et al. (2015) Differential expression of microRNAs in renal transplant patients with acute T-cell mediated rejection. Transplant Immunology 33: 1–6. DOI: 10.1016/j.trim.2015.05.002.
Google Scholar | Crossref | Medline15. Chung, BH, Kim, KW, Kim, B-M, et al. (2015) Increase of Th17 cell phenotype in kidney transplant recipients with chronic allograft dysfunction. PLoS One 10: e0145258. DOI: 10.1371/journal.pone.0145258.
Google Scholar | Crossref | Medline16. Saxena, A, Panigrahi, A, Gupta, S, et al. (2012) Frequency of T cell expressing Th1 and Th2 associated chemokine receptor in patients with renal allograft dysfunction. Transplantation Proceedings 44: 290–295. DOI: 10.1016/j.transproceed.2011.12.047.
Google Scholar | Crossref | Medline17. Shi, J, Luo, F, Shi, Q, et al. (2015) Increased circulating follicular helper T cells with decreased programmed death-1 in chronic renal allograft rejection. BMC Nephrology 16: 182. DOI: 10.1186/s12882-015-0172-8.
Google Scholar | Crossref | Medline18. La Muraglia, GM, Wagener, ME, Ford, ML, et al. (2020) Circulating T follicular helper cells are a biomarker of humoral alloreactivity and predict donor‐specific antibody formation after transplantation. American Journal of Transplantation 20: 75–87. DOI: 10.1111/ajt.15517.
Google Scholar | Crossref | Medline19. Li, XC, Turka, LA (2010) An update on regulatory T cells in transplant tolerance and rejection. Nature Reviews Nephrology 6: 577–583. DOI: 10.1038/nrneph.2010.101.
Google Scholar | Crossref | Medline20. Krystufkova, E, Sekerkova, A, Striz, I, et al. (2012) Regulatory T cells in kidney transplant recipients: the effect of induction immunosuppression therapy. Nephrology Dialysis Transplantation 27: 2576–2582. DOI: 10.1093/ndt/gfr693.
Google Scholar | Crossref | Medline21. Hu, M, Wang, YM, Wang, Y, et al. (2016) Regulatory T cells in kidney disease and transplantation. Kidney International 90: 502–514. DOI: 10.1016/j.kint.2016.03.022.
Google Scholar | Crossref | Medline22. Burton, H, Dorling, A (2017) Transitional B cell subsets-a convincing predictive biomarker for allograft loss? Kidney International 91: 18–20. DOI: 10.1016/j.kint.2016.10.028.
Google Scholar | Crossref | Medline23. Svachova, V, Sekerkova, A, Hruba, P, et al. (2016) Dynamic changes of B-cell compartments in kidney transplantation: Lack of transitional B cells is associated with allograft rejection. Transplant International 29: 540–548. DOI: 10.1111/tri.12751.
Google Scholar | Crossref | Medline24. Cherukuri, A, Salama, AD, Carter, CR, et al. (2017) Reduced human transitional B cell T1/T2 ratio is associated with subsequent deterioration in renal allograft function. Kidney International 91: 183–195. DOI: 10.1016/j.kint.2016.08.028.
Google Scholar | Crossref | Medline25. Viklicky, O, Krystufkova, E, Brabcova, I, et al. (2013) B-cell-related biomarkers of tolerance are up-regulated in rejection-free kidney transplant recipients. Transplantation 95: 148–154. DOI: 10.1097/TP.0b013e3182789a24.
Google Scholar | Crossref | Medline26. Meijers, RW, Litjens, NH, de Wit, EA, et al. (2012) Uremia causes premature ageing of the T cell compartment in end-stage renal disease patients. Immunity & Ageing 9: 19. DOI: 10.1186/1742-4933-9-19.
Google Scholar | Crossref | Medline27. Loupy, A, Haas, M, Solez, K, et al. (2017) The Banff 2015 kidney meeting report: Current challenges in rejection classification and prospects for adopting molecular pathology. American Journal of Transplantation 17: 28–41. DOI: 10.1111/ajt.14107.
Google Scholar | Crossref | Medline28. Liu, Y, Ji, H, Zhao, P, et al. (2019) Follicular helper T cell and memory B cell immunity in CHC patients. Journal of Molecular Medicine 97: 397–407. DOI: 10.1007/s00109-018-01735-z.
Google Scholar | Crossref | Medline29. Davis, S, Cooper, JE (2017) Acute antibody-mediated rejection in kidney transplant recipients. Transplantation Reviews 31: 47–54. DOI: 10.1016/j.trre.2016.10.004.
Google Scholar | Crossref30. Orandi, BJ, Chow, EHK, Hsu, A, et al. (2015) Quantifying renal allograft loss following early antibody-mediated rejection. American Journal of Transplantation 15: 489–498. DOI: 10.1111/ajt.12982.
Google Scholar | Crossref | Medline31. Cicora, F, Paz, M, Mos, F, et al.(2013) Use of bortezomib to treat anti-HLA antibodies in renal transplant patients: a single-center experience. Transplant Immunology 29: 7–10. DOI: 10.1016/j.trim.2013.08.003.
Google Scholar | Crossref | Medline32. Thomas, KA, Valenzuela, NM, Reed, EF (2015) The perfect storm: HLA antibodies, complement, FcγRs, and endothelium in transplant rejection. Trends in Molecular Medicine 21: 319–329. DOI: 10.1016/j.molmed.2015.02.004.
Google Scholar | Crossref | Medline33. Hörmann, M, Dieplinger, G, Rebellato, LM, et al. (2016) Incidence and impact of anti-HLA-DP antibodies in renal transplantation. Clinical Transplantation 30: 1108–1114. DOI: 10.1111/ctr.12794.
Google Scholar | Crossref | Medline34. Dragun, D, Catar, R, Philippe, A (2013) Non-HLA antibodies in solid organ transplantation. Current Opinion in Organ Transplantation 18: 430–435. DOI: 10.1097/MOT.0b013e3283636e55.
Google Scholar | Crossref | Medline35. Nickerson, PW, Rush, DN (2013) Rejection: an integrated response. American Journal of Transplantation 13: 2239–2240. DOI: 10.1111/ajt.12365.
Google Scholar | Crossref | Medline36. Lachmann, N, Terasaki, PI, Budde, K, et al. (2009) Anti-human leukocyte antigen and donor-specific antibodies detected by luminex posttransplant serve as biomarkers for chronic rejection of renal allografts. Transplantation 87: 1505–1513. DOI: 10.1097/TP.0b013e3181a44206.
Google Scholar | Crossref | Medline | ISI37. Cross, AR, Lion, J, Loiseau, P, et al. (2016) Donor Specific Antibodies are not only directed against HLA-DR: Minding your Ps and Qs. Human Immunology 77: 1092–1100. DOI: 10.1016/j.humimm.2016.04.003.
Google Scholar | Crossref | Medline38. Kauke, T, Oberhauser, C, Lin, V, et al. (2017) De novodonor-specific anti-HLA antibodies after kidney transplantation are associated with impaired graft outcome independently of their C1q-binding ability. Transplant International 30: 360–370. DOI: 10.1111/tri.12887.
Google Scholar | Crossref | Medline39. Nouël, A, Ségalen, I, Jamin, C, et al. (2014) B cells display an abnormal distribution and an impaired suppressive function in patients with chronic antibody-mediated rejection. Kidney International 85: 590–599. DOI: 10.1038/ki.2013.457.
Google Scholar | Crossref | Medline40. Colvin, RB, Hirohashi, T, Farris, AB, et al. (2010) Emerging role of B cells in chronic allograft dysfunction. Kidney International 78: S13–S17. DOI: 10.1038/ki.2010.436.
Google Scholar | Crossref41. Arpin, C, Dechanet, J, Van Kooten, C, et al. (1995) Generation of memory B cells and plasma cells in vitro. Science 268: 720–722. DOI: 10.1126/science.7537388.
Google Scholar | Crossref | Medline | ISI42. Agematsu, K (2000) Author index for volume 15. Molecular and Cellular Neuroscience 15: 573–574. DOI: 10.14670/HH-15.573.
Google Scholar | Crossref43. Mahajan, S, Mukhiya, GK, Singh, R, et al. (2005) Assessing suitability for renal donation: can equations predicting glomerular filtration rate substitute for a reference method in the Indian population? Nephron Clinical Practice 101: c128–c133. DOI: 10.1159/000086683.
Google Scholar | Crossref | Medline44. Fernández‐Fresnedo, G, Palomar, R, Escallada, R, et al. (2001) Hypertension and long‐term renal allograft survival: Effect of early glomerular filtration rate. Nephrology Dialysis Transplantation 16(Suppl 1): 105–109. DOI: 10.1093/ndt/16.suppl_1.105.

留言 (0)

沒有登入
gif