MicroRNA-30 inhibits the growth of human ovarian cancer cells by suppressing RAB32 expression

1. Meshcheryakova, A, Svoboda, M, Jaritz, M, et al. (2019) Interrelations of sphingolipid and lysophosphatidate signaling with immune system in ovarian cancer. Computational and Structural Biotechnology Journal 17: 537–560.
Google Scholar | Crossref | Medline2. Su, K-M, Wang, P-H, Yu, M-H, et al. (2020) The recent progress and therapy in endometriosis-associated ovarian cancer. Journal of the Chinese Medical Association 83(3): 227–232.
Google Scholar | Crossref | Medline3. Matulonis, UA, Sood, AK, Fallowfield, L, et al. (2016) Ovarian cancer. Nature reviews. Disease primers 2(21): 16061–16122.
Google Scholar | Crossref | Medline4. Stewart, C, Ralyea, C, Lockwood, S (2019) Ovarian cancer: an integrated review. Seminars in Oncology Nursing 35(2): 151–156.
Google Scholar | Crossref | Medline5. Torre, LA, Trabert, B, DeSantis, CE, et al. (2018) Ovarian cancer statistics, 2018. CA: A Cancer Journal for Clinicians 68(4): 284–296.
Google Scholar | Crossref | Medline6. Slack, FJ, Chinnaiyan, AM (2019) The role of non-coding RNAs in oncology. Cell 179(5): 1033–1055.
Google Scholar | Crossref | Medline7. Arun, G, Diermeier, SD, Spector, DL (2018) Therapeutic targeting of long non-coding RNAs in cancer. Trends in Molecular Medicine 24(3): 257–277.
Google Scholar | Crossref | Medline8. Nagy, O, Baráth, S, Ujfalusi, A (2019) The role of microRNAs in congenital heart disease. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine 30(2): 165–178.
Google Scholar9. Thyagarajan, A, Shaban, A, Sahu, RP (2018) MicroRNA-directed cancer therapies: implications in melanoma intervention. Journal of Pharmacology and Experimental Therapeutics 364(1): 1–12.
Google Scholar | Crossref | Medline10. Liu, P, Xie, X, Yang, A, et al. (2020) Melatonin regulates breast cancer progression by the lnc010561/miR-30/FKBP3 Axis. Molecular Therapy - Nucleic Acids 19: 765–774.
Google Scholar | Crossref | Medline11. Yin, H, Wang, Y, Wu, Y, et al. (2020) EZH2-mediated epigenetic silencing of miR-29/miR-30 targets LOXL4 and contributes to tumorigenesis, metastasis, and immune microenvironment Remodeling in breast cancer. Theranostics 10(19): 8494–8512.
Google Scholar | Crossref | Medline12. Saleh, AD, Cheng, H, Martin, SE, et al. (2019) Integrated genomic and functional microRNA analysis identifies miR-30-5p as a tumor suppressor and potential therapeutic nanomedicine in head and neck cancer. Clinical Cancer Research 25(9): 2860–2873.
Google Scholar | Crossref | Medline13. Huang, XY, Zhang, PF, Wei, CY, et al. (2020) Circular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axis. Molecular Cancer 19: 92–18.
Google Scholar | Crossref | Medline14. Li, Y, Zhou, J, Wang, J, et al. (2020) Mir-30b-3p affects the migration and invasion function of ovarian cancer cells by targeting the CTHRC1 gene. Biological Research 53(1): 10–18.
Google Scholar | Crossref | Medline15. Bao, S, Wang, X, Wang, Z, et al. (2018) MicroRNA-30 mediates cell invasion and metastasis in breast cancer. Biochemistry and Cell Biology 96(6): 825–831.
Google Scholar | Crossref | Medline16. Kumarswamy, R, Mudduluru, G, Ceppi, P, et al. (2012) MicroRNA-30a inhibits epithelial-to-mesenchymal transition by targeting snai1 and is downregulated in non-small cell lung cancer. International journal of cancer 130(9): 2044–2053.
Google Scholar | Crossref | Medline17. Salem, M, O'Brien, JA, Bernaudo, S, et al. (2018) miR-590-3p promotes ovarian cancer growth and metastasis via a novel FOXA2-versican pathway. Cancer Research 78(15): 4175–4190.
Google Scholar | Crossref | Medline18. Moga, MA, Bălan, A, Dimienescu, OG, et al. (2019) Circulating miRNAs as biomarkers for endometriosis and endometriosis-related ovarian cancer-an overview. Journal of Clinical Medicine 8(5): 735.
Google Scholar | Crossref19. Du, X, Liu, B, Luan, X, et al. (2018) miR-30 decreases multidrug resistance in human gastric cancer cells by modulating cell autophagy. Experimental and Therapeutic Medicine 15(1): 599–605.
Google Scholar | Medline20. Chen, C, Zhou, L, Wang, H, et al. (2018) Long noncoding RNA CNALPTC1 promotes cell proliferation and migration of papillary thyroid cancer via sponging miR-30 family. American Journal of Cancer Research 8(1): 192–206.
Google Scholar | Medline21. Zhou, Z, Chen, Y, Zhang, D, et al. (2019) MicroRNA-30-3p suppresses inflammatory factor-induced endothelial cell injury by targeting TCF21. Mediators of inflammation 2019: 1342190.
Google Scholar | Crossref | Medline22. Zhong, K, Chen, K, Han, L, et al. (2014) MicroRNA-30b/c inhibits non-small cell lung cancer cell proliferation by targeting Rab18. BMC Cancer 14(1): 703–708.
Google Scholar | Crossref | Medline23. Croset, M, Pantano, F, Kan, CWS, et al. (2018) miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Research 78(18): 5259–5273.
Google Scholar | Crossref | Medline24. Ho, JR, Chapeaublanc, E, Kirkwood, L, et al. (2012) Deregulation of rab and rab effector genes in bladder cancer. PloS One 7(6): e39469.
Google Scholar | Crossref | Medline25. Shibata, D, Mori, Y, Cai, K, et al. (2006) RAB32 hypermethylation and microsatellite instability in gastric and endometrial adenocarcinomas. International Journal of Cancer 119(4): 801–806.
Google Scholar | Crossref | Medline26. Bao, J, Li, X, Li, Y, et al. (2020) MicroRNA-141-5p acts as a tumor suppressor via targeting RAB32 in chronic myeloid leukemia. Frontiers in Pharmacology 10: 1545.
Google Scholar | Crossref | Medline27. Brabletz, T, Kalluri, R, Nieto, MA, et al. (2018) EMT in cancer. Nature Reviews Cancer 18(2): 128–134.
Google Scholar | Crossref | Medline28. Da Silva, SD, Morand, GB, Alobaid, FA, et al. (2015) Epithelial-mesenchymal transition (EMT) markers have prognostic impact in multiple primary oral squamous cell carcinoma. Clinical & Experimental Metastasis 32(1): 55–63.
Google Scholar | Crossref | Medline29. Cheaito, KA, Bahmad, HF, Hadadeh, O, et al. (2019) EMT markers in locally advanced prostate cancer: predicting recurrence? Frontiers in Oncology 9: 131.
Google Scholar | Crossref | Medline30. Andrikopoulou, A, Liontos, M, Koutsoukos, K, et al. (2021) Clinical perspectives of BET inhibition in ovarian cancer. Cellular Oncology 19: 1–3.
Google Scholar

留言 (0)

沒有登入
gif