1. Garvey, JF, Pengo, MF, Drakatos, P, et al. Epidemiological aspects of obstructive sleep apnea. J Thorac Dis 2015; 7: 920–929.
Google Scholar |
Medline2. Schwartz, AR, Patil, SP, Laffan, AM, et al. Obesity and obstructive sleep apnea: pathogenic mechanisms and therapeutic approaches. Proc Am Thorac Soc 2008; 5: 185–192.
Google Scholar |
Crossref |
Medline3. Rossi, VA, Stradling, JR, Kohler, M. Effects of obstructive sleep apnoea on heart rhythm. Eur Respir J 2013; 41: 1439–1451.
Google Scholar |
Crossref |
Medline4. Lavie, L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia–revisited–the bad ugly and good: implications to the heart and brain. Sleep Med Rev 2015; 20: 27–45.
Google Scholar |
Crossref |
Medline5. Bradley, TD, Floras, JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet 2009; 373: 82–93.
Google Scholar |
Crossref |
Medline |
ISI6. Bauters, F, Rietzschel, ER, Hertegonne, KB, et al. The link between obstructive sleep apnea and cardiovascular disease. Curr Atheroscler Rep 2016; 18: 1–12.
Google Scholar |
Crossref |
Medline |
ISI7. Tarnow, L, Klinkenbijl, B, Woehrle, H. Sleeping beauty or the beast? – metabolic syndrome from an obstructive sleep apnoea perspective. Eur Endocrinol 2013; 9: 12–17.
Google Scholar |
Crossref |
Medline8. Beebe, DW, Gozal, D. Obstructive sleep apnea and the prefrontal cortex: towards a comprehensive model linking nocturnal upper airway obstruction to daytime cognitive and behavioral deficits. J Sleep Res 2002; 11: 1–16.
Google Scholar |
Crossref |
Medline |
ISI9. Rolfe, DF, Brown, GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 1997; 77: 731–758.
Google Scholar |
Crossref |
Medline |
ISI10. Strandgaard, S, Paulson, OB. Regulation of cerebral blood flow in health and disease. J Cardiovasc Pharmacol 1992; 19 Suppl 6: S89–93.
Google Scholar |
Crossref |
Medline11. Ainslie, PN, Ogoh, S. Regulation of cerebral blood flow in mammals during chronic hypoxia: a matter of balance. Exp Physiol 2010; 95: 251–262.
Google Scholar |
Crossref |
Medline |
ISI12. Ainslie, PN, Shaw, AD, Smith, KJ, et al. Stability of cerebral metabolism and substrate availability in humans during hypoxia and hyperoxia. Clin Sci (Lond) 2014; 126: 661–670.
Google Scholar |
Crossref |
Medline |
ISI13. Peng, SL, Ravi, H, Sheng, M, et al. Searching for a truly “iso-metabolic” gas challenge in physiological MRI. J Cereb Blood Flow Metab 2017; 37: 715–725.
Google Scholar |
SAGE Journals |
ISI14. Sobesky, J, Zaro Weber, O, Lehnhardt, FG, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005; 36: 980–985.
Google Scholar |
Crossref |
Medline |
ISI15. Miles, KA, Williams, RE. Warburg revisited: imaging tumour blood flow and metabolism. Cancer Imaging 2008; 8: 81–86.
Google Scholar |
Crossref |
Medline |
ISI16. Ishii, K, Kitagaki, H, Kono, M, et al. Decreased medial temporal oxygen metabolism in alzheimer's disease shown by PET. J Nucl Med 1996; 37: 1159–1165.
Google Scholar |
Medline |
ISI17. Borghammer, P, Vafaee, M, Ostergaard, K, et al. Effect of memantine on CBF and CMRO2 in patients with early Parkinson's disease. Acta Neurol Scand 2008; 117: 317–323.
Google Scholar |
Crossref |
Medline |
ISI18. Mintun, MA, Raichle, ME, Martin, WR, et al. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med 1984; 25: 177–187.
Google Scholar |
Medline |
ISI19. Xu, F, Ge, Y, Lu, H. Noninvasive quantification of whole-brain cerebral metabolic rate of oxygen (CMRO2) by MRI. Magn Reson Med 2009; 62: 141–148.
Google Scholar |
Crossref |
Medline |
ISI20. Jain, V, Langham, MC, Wehrli, FW. MRI estimation of global brain oxygen consumption rate. J Cereb Blood Flow Metab 2010; 30: 1598–1607.
Google Scholar |
SAGE Journals |
ISI21. Rodgers, ZB, Jain, V, Englund, EK, et al. High temporal resolution MRI quantification of global cerebral metabolic rate of oxygen consumption in response to apneic challenge. J Cereb Blood Flow Metab 2013; 33: 1514–1522.
Google Scholar |
SAGE Journals |
ISI22. Spees, WM, Yablonskiy, DA, Oswood, MC, et al. Water proton MR properties of human blood at 1.5 tesla: magnetic susceptibility, T(1), T(2), T*(2), and non-Lorentzian signal behavior. Magn Reson Med 2001; 45: 533–542.
Google Scholar |
Crossref |
Medline |
ISI23. Thulborn, KR, Waterton, JC, Matthews, PM, et al. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 1982; 714: 265–270.
Google Scholar |
Crossref |
Medline |
ISI24. Wright, GA, Hu, BS, Macovski, A. 1991 I.I. Rabi award. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging 1991; 1: 275–283.
Google Scholar |
Crossref |
Medline |
ISI25. Rodgers, ZB, Leinwand, SE, Keenan, BT, et al. Cerebral metabolic rate of oxygen in obstructive sleep apnea at rest and in response to breath-hold challenge. J Cereb Blood Flow Metab 2016; 36: 755–767.
Google Scholar |
SAGE Journals |
ISI26. Cao, W, Chang, YV, Englund, EK, et al. High-speed whole-brain oximetry by golden-angle radial MRI. Magn Reson Med 2018; 79: 217–223.
Google Scholar |
Crossref |
Medline27. Fernandez-Seara, MA, Techawiboonwong, A, Detre, JA, et al. MR susceptometry for measuring global brain oxygen extraction. Magn Reson Med 2006; 55: 967–973.
Google Scholar |
Crossref |
Medline |
ISI28. Wu, PH, Rodriguez-Soto, AE, Rodgers, ZB, et al. MRI evaluation of cerebrovascular reactivity in obstructive sleep apnea. J Cereb Blood Flow Metab 2020; 40: 1328–1337.
Google Scholar |
SAGE Journals |
ISI29. Kochanowicz, J, Lewko, J, Rutkowski, R, et al. Influence of smoking cigarettes on cerebral blood flow parameters. Biol Res Nurs 2015; 17: 8–12.
Google Scholar |
SAGE Journals |
ISI30. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans Syst, Man, Cybern 1979; 9: 62–66.
Google Scholar |
Crossref31. Friston KJ, Ashburner JT, Kiebel SJ, et al. (2007). Statistical Parametric Mapping: The Analysis of Functional Brain Images. London: Academic Press.
Google Scholar32. Moussavi, A, Untenberger, M, Uecker, M, et al. Correction of gradient-induced phase errors in radial MRI. Magn Reson Med 2014; 71: 308–312.
Google Scholar |
Crossref |
Medline33. Song, HK, Dougherty, L. k-space weighted image contrast (KWIC) for contrast manipulation in projection reconstruction MRI. Magn Reson Med 2000; 44: 825–832.
Google Scholar |
Crossref |
Medline34. Herscovitch, P, Raichle, ME. What is the correct value for the brain–blood partition coefficient for water? J Cereb Blood Flow Metab 1985; 5: 65–69.
Google Scholar |
SAGE Journals |
ISI35. Langham, MC, Magland, JF, Floyd, TF, et al. Retrospective correction for induced magnetic field inhomogeneity in measurements of large-vessel hemoglobin oxygen saturation by MR susceptometry. Magn Reson Med 2009; 61: 626–633.
Google Scholar |
Crossref |
Medline |
ISI36. Weatherall, MS, Sherry, KM. An evaluation of the spuncrit infra-red analyser for measurement of haematocrit. Clin Lab Haematol 1997; 19: 183–186.
Google Scholar |
Crossref |
Medline37. Prilipko, O, Huynh, N, Thomason, ME, et al. An fMRI study of cerebrovascular reactivity and perfusion in obstructive sleep apnea patients before and after CPAP treatment. Sleep Med 2014; 15: 892–898.
Google Scholar |
Crossref |
Medline |
ISI38. Zhang, J, Veasey, S. Making sense of oxidative stress in obstructive sleep apnea: mediator or distracter? Front Neurol 2012; 3: 179–2013.
Google Scholar |
Crossref |
Medline39. Baril, AA, Carrier, J, Lafreniere, A, Canadian Sleep and Circadian Network et al. Biomarkers of dementia in obstructive sleep apnea. Sleep Med Rev 2018; 42: 139–148.
Google Scholar |
Crossref |
Medline40. McMurray, F, Patten, DA, Harper, ME. Reactive oxygen species and oxidative stress in obesity – recent findings and empirical approaches. Obesity (Silver Spring) 2016; 24: 2301–2310.
Google Scholar |
Crossref |
Medline41. Yaouhi, K, Bertran, F, Clochon, P, et al. A combined neuropsychological and brain imaging study of obstructive sleep apnea. J Sleep Res 2009; 18: 36–48.
Google Scholar |
Crossref |
Medline42. Caporale, A, Lee, H, Lei, H, et al. Cerebral metabolic rate of oxygen during transition from wakefulness to sleep measured with high temporal resolution OxFlow MRI with concurrent EEG. J Cereb Blood Flow Metab 2021; 41: 780–792.
Google Scholar |
SAGE Journals |
ISI
留言 (0)