Systematic validation of structural brain networks in cerebral small vessel disease

1. ter Telgte, A, Wiegertjes, K, Tuladhar, AM, et al. Investigating the origin and evolution of cerebral small vessel disease: the RUN DMC – InTENse study. Eur Stroke J 2018; 3: 369–378.
Google Scholar | SAGE Journals | ISI2. Wardlaw, JM, Smith, C, Dichgans, M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol 2019; 18: 684–696.
Google Scholar | Crossref | Medline3. Wardlaw, JM, Smith, EE, Biessels, GJ, et al.; STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1) . Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013; 12: 822–838.
Google Scholar | Crossref | Medline | ISI4. Baykara, E, Gesierich, B, Adam, R, et al.; Alzheimer's Disease Neuroimaging Initiative . A novel imaging marker for small vessel disease based on skeletonization of white matter tracts and diffusion histograms. Ann Neurol 2016; 80: 581–592.
Google Scholar | Crossref | Medline5. Konieczny, MJ, Dewenter, A, ter Telgte, A, et al. Multi-shell diffusion MRI models for white matter characterization in cerebral small vessel disease. Neurology 2021; 96: e698–e708.
Google Scholar | Crossref | Medline6. Tournier, J-D. Diffusion MRI in the brain – theory and concepts. Prog Nucl Magn Reson Spectrosc 2019; 112–113: 1–16.
Google Scholar | Crossref | Medline7. ter Telgte, A, van Leijsen, EMC, Wiegertjes, K, et al. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol 2018; 14: 387–398.
Google Scholar | Crossref | Medline8. Rubinov, M, Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 2010; 52: 1059–1069.
Google Scholar | Crossref | Medline | ISI9. Boot, EM, Mc van Leijsen, E, Bergkamp, MI, et al. Structural network efficiency predicts cognitive decline in cerebral small vessel disease. NeuroImage Clin 2020; 27: 102325.
Google Scholar | Crossref | Medline10. Reijmer, YD, Fotiadis, P, Martinez-Ramirez, S, et al. Structural network alterations and neurological dysfunction in cerebral amyloid angiopathy. Brain 2015; 138: 179–188.
Google Scholar | Crossref | Medline | ISI11. Tuladhar, AM, Tay, J, Leijsen, E, van, et al. Structural network changes in cerebral small vessel disease. J Neurol Neurosurg Psychiatry 2020; 91: 196–203.
Google Scholar | Crossref | Medline12. Xu, X, Lau, KK, Wong, YK, et al. The effect of the total small vessel disease burden on the structural brain network. Sci Rep 2018; 8: 7442.
Google Scholar | Crossref | Medline13. Jeurissen, B, Leemans, A, Tournier, J-D, et al. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp 2013; 34: 2747–2766.
Google Scholar | Crossref | Medline14. Welton, T, Kent, DA, Auer, DP, et al. Reproducibility of graph-theoretic brain network metrics: a systematic review. Brain Connect 2015; 5: 193–202.
Google Scholar | Crossref | Medline15. van Norden, AG, de Laat, KF, Gons, RA, et al. Causes and consequences of cerebral small vessel disease. The RUN DMC study: a prospective cohort study. Study rationale and protocol. BMC Neurol 2011; 11: 29.
Google Scholar | Crossref | Medline16. Tombaugh, TN. Trail making test a and B: Normative data stratified by age and education. Arch Clin Neuropsychol 2004; 19: 203–214.
Google Scholar | Crossref | Medline | ISI17. Telgte, A, Wiegertjes, K, Gesierich, B, et al. The contribution of acute infarcts to cerebral small vessel disease progression. Ann Neurol 2019; 86: 582–592.
Google Scholar | Crossref | Medline18. Veraart, J, Novikov, DS, Christiaens, D, et al. Denoising of diffusion MRI using random matrix theory. NeuroImage 2016; 142: 394–406.
Google Scholar | Crossref | Medline19. Veraart, J, Fieremans, E, Novikov, DS. Diffusion MRI noise mapping using random matrix theory. Magn Reson Med 2016; 76: 1582–1593.
Google Scholar | Crossref | Medline20. Cordero-Grande, L, Christiaens, D, Hutter, J, et al. Complex diffusion-weighted image estimation via matrix recovery under general noise models. NeuroImage 2019; 200: 391–404.
Google Scholar | Crossref | Medline21. Tournier, J-D, Smith, R, Raffelt, D, et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 2019; 202: 116137.
Google Scholar | Crossref | Medline22. Kellner, E, Dhital, B, Kiselev, VG, et al. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med 2016; 76: 1574–1581.
Google Scholar | Crossref | Medline23. Andersson, JLR, Skare, S, Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 2003; 20: 870–888.
Google Scholar | Crossref | Medline | ISI24. Smith, SM, Jenkinson, M, Woolrich, MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 2004; 23: S208–S219.
Google Scholar | Crossref | Medline | ISI25. Andersson, JLR, Sotiropoulos, SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 2016; 125: 1063–1078.
Google Scholar | Crossref | Medline26. Tabesh, A, Jensen, JH, Ardekani, BA, et al. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 2011; 65: 823–836.
Google Scholar | Crossref | Medline | ISI27. Smith, SM, Jenkinson, M, Johansen-Berg, H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 2006; 31: 1487–1505.
Google Scholar | Crossref | Medline | ISI28. Tournier, J-D, Calamante, F, Connelly, A. MRtrix: diffusion tractography in crossing fiber regions. Int J Imaging Syst Technol 2012; 22: 53–66.
Google Scholar | Crossref | ISI29. Smith, RE, Tournier, J-D, Calamante, F, et al. Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage 2012; 62: 1924–1938.
Google Scholar | Crossref | Medline30. Avants, BB, Tustison, NJ, Song, G, et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 2011; 54: 2033–2044.
Google Scholar | Crossref | Medline | ISI31. Gesierich, B, Tuladhar, AM, Telgte, A, ter, et al. Alterations and test–retest reliability of functional connectivity network measures in cerebral small vessel disease. Hum Brain Mapp 2020; 41: 2629–2641.
Google Scholar | Crossref | Medline32. Hagmann, P, Kurant, M, Gigandet, X, et al. Mapping human whole-brain structural networks with diffusion MRI. Plos One 2007; 2: e597.
Google Scholar | Crossref | Medline | ISI33. Jeurissen, B, Tournier, J-D, Dhollander, T, et al. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage 2014; 103: 411–426.
Google Scholar | Crossref | Medline34. Smith, RE, Tournier, J-D, Calamante, F, et al. SIFT2: enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. NeuroImage 2015; 119: 338–351.
Google Scholar | Crossref | Medline35. Hagmann, P, Cammoun, L, Gigandet, X, et al. Mapping the structural core of human cerebral cortex. PLOS Biol 2008; 6: e159.
Google Scholar | Crossref | Medline | ISI36. R Core Team. R: a language and environment for statistical computing. Found Stat Comput. Vienna: Author, 2016.
Google Scholar37. Yeo, I, Johnson, RA. A new family of power transformations to improve normality or symmetry. Biometrika 2000; 87: 954–959.
Google Scholar | Crossref | ISI38. Bates, D, Mächler, M, Bolker, B, et al. Fitting linear mixed-effects models using lme4. ArXiv14065823 Stat, http://arxiv.org/abs/1406.5823. 2014.
Google Scholar | Crossref39. Kuznetsova, A, Brockhoff, PB, Christensen, RHB. lmerTest package: tests in linear mixed effects models. J Stat Softw 2017; 82: 1–26.
Google Scholar | Crossref40. Canty, AJ, Ripley, B. boot: Bootstrap R (S-Plus) Functions: R Package Version 1.3-11. The R Package for Statistical Reporting: 2014.
Google Scholar41. Barton, K, Barton, MK. Package ‘Mu-MIn’: Multi-model inference Version 1. The R Package for Statistical Reporting: 2019.
Google Scholar42. Shrout, PE, Fleiss, JL. Intraclass correlations: Uses in assessing rater reliability. Psychol Bull 1979; 86: 420–428.
Google Scholar | Crossref | Medline | ISI43. Benjamin, P, Zeestraten, E, Lambert, C, et al. Progression of MRI markers in cerebral small vessel disease: sample size considerations for clinical trials. J Cereb Blood Flow Metab off J Tab 2016; 36: 228–240.
Google Scholar | SAGE Journals | ISI44. Tiedt, S, Duering, M, Barro, C, et al. Serum neurofilament light: a biomarker of neuroaxonal injury after ischemic stroke. Neurology 2018; 91: e1338–e1347.
Google Scholar | Crossref | Medline45. Tuladhar, AM, Lawrence, A, Norris, DG, et al. Disruption of rich club organisation in cerebral small vessel disease. Hum Brain Mapp 2017; 38: 1751–1766.
Google Scholar | Crossref | Medline46. Finsterwalder, S, Vlegels, N, Gesierich, B, et al.’ Utrecht VCI study group . Small vessel disease more than Alzheimer’s disease determines diffusion MRI alterations in memory clinic patients. Alzheimers Dement 2020; 16: 1504–1514.
Google Scholar | Crossref | Medline47. Civier, O, Smith, RE, Yeh, C-H, et al. Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI? NeuroImage 2019; 194: 68–81.
Google Scholar | Crossref | Medline48. de Brito Robalo, BM, Vlegels, N, Meier, J, et al.; Utrecht VCI Study Group . Effect of fixed-density thresholding on structural brain networks: a demonstration in cerebral small vessel disease. Brain Connect 2020; 10: 121–133.
Google Scholar | Crossref | Medline49. Smith, EE, Biessels, GJ, De Guio, F, et al. Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimers Dement (Amst) 2019; 11: 191–204.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif