Prolonged release of VEGF and Ang1 from intralesionally implanted hydrogel promotes perilesional vascularization and functional recovery after experimental ischemic stroke

1. Donkor, ES. Stroke in the 21(st) century: a snapshot of the burden, epidemiology, and quality of life. Stroke Res Treat 2018; 2018: 3238165.
Google Scholar | Crossref | Medline2. Virani, SS, Alonso, A, Aparicio, HJ, et al.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee . Heart disease and stroke statistics-2021 update: a report from the American Heart Association. Circulation 2021; 143: e254–e743.
Google Scholar | Crossref | Medline3. Campbell, BCV, De Silva, DA, Macleod, MR, et al. Ischaemic stroke. Nat Rev Dis Primers 2019; 5: 70.
Google Scholar | Crossref | Medline4. Catanese, L, Tarsia, J, Fisher, M, Acute ischemic stroke therapy overview. Circ Res 2017; 120: 541–558.
Google Scholar | Crossref | Medline5. Heiss, WD. The ischemic penumbra: how does tissue injury evolve? Ann N Y Acad Sci 2012; 1268: 26–34.
Google Scholar | Crossref | Medline | ISI6. Carmichael, ST. The 3 Rs of stroke biology: radial, relayed, and regenerative. Neurotherapeutics 2016; 13: 348–359.
Google Scholar | Crossref | Medline7. Nudo, RJ. Recovery after brain injury: mechanisms and principles. Front Hum Neurosci 2013; 7: 887.
Google Scholar | Crossref | Medline | ISI8. Kanazawa, M, Takahashi, T, Ishikawa, M, et al. Angiogenesis in the ischemic core: a potential treatment target? J Cereb Blood Flow Metab 2019; 39: 753–769.
Google Scholar | SAGE Journals | ISI9. Cramer, SC, Chopp, M. Recovery recapitulates ontogeny. Trends Neurosci 2000; 23: 265–271.
Google Scholar | Crossref | Medline | ISI10. Hansen, TM, Moss, AJ, Brindle, NP. Vascular endothelial growth factor and angiopoietins in neurovascular regeneration and protection following stroke. Curr Neurovasc Res 2008; 5: 236–245.
Google Scholar | Crossref | Medline | ISI11. Ruan, L, Wang, B, ZhuGe, Q, et al. Coupling of neurogenesis and angiogenesis after ischemic stroke. Brain Res 2015; 1623: 166–173.
Google Scholar | Crossref | Medline | ISI12. Greenberg, DA, Jin, K. Vascular endothelial growth factors (VEGFs) and stroke. Cell Mol Life Sci 2013; 70: 1753–1761.
Google Scholar | Crossref | Medline | ISI13. Hatakeyama, M, Ninomiya, I, Kanazawa, M. Angiogenesis and neuronal remodeling after ischemic stroke. Neural Regen Res 2020; 15: 16–19.
Google Scholar | Crossref | Medline14. Storkebaum, E, Lambrechts, D, Carmeliet, P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. Bioessays 2004; 26: 943–954.
Google Scholar | Crossref | Medline | ISI15. Rosenstein, JM, Krum, JM. New roles for VEGF in nervous tissue–beyond blood vessels. Exp Neurol 2004; 187: 246–253.
Google Scholar | Crossref | Medline | ISI16. Alvarez-Buylla, A, Lim, DA. For the long run: maintaining germinal niches in the adult brain. Neuron 2004; 41: 683–686.
Google Scholar | Crossref | Medline | ISI17. Thored, P, Wood, J, Arvidsson, A, et al. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke 2007; 38: 3032–3039.
Google Scholar | Crossref | Medline | ISI18. Greenberg, DA, Jin, K. From angiogenesis to neuropathology. Nature 2005; 438: 954–959.
Google Scholar | Crossref | Medline | ISI19. Chen, J, Chopp, M, Neurorestorative treatment of stroke: cell and pharmacological approaches. NeuroRx 2006; 3: 466–473.
Google Scholar | Crossref | Medline20. Bogorad, MI, DeStefano, JG, Linville, RM, et al. Cerebrovascular plasticity: processes that lead to changes in the architecture of brain microvessels. J Cereb Blood Flow Metab 2019; 39: 1413–1432.
Google Scholar | SAGE Journals | ISI21. Neufeld, G, Cohen, T, Gengrinovitch, S, et al. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 1999; 13: 9–22.
Google Scholar | Crossref | Medline | ISI22. Ma, Y, Zechariah, A, Qu, Y, et al. Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res 2012; 90: 1873–1882.
Google Scholar | Crossref | Medline | ISI23. Ozawa, CR, Banfi, A, Glazer, NL, et al. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 2004; 113: 516–527.
Google Scholar | Crossref | Medline | ISI24. Thurston, G, Rudge, JS, Ioffe, E, et al. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 2000; 6: 460–463.
Google Scholar | Crossref | Medline | ISI25. Emerich, DF, Silva, E, Ali, O, et al. Injectable VEGF hydrogels produce near complete neurological and anatomical protection following cerebral ischemia in rats. Cell Transplant 2010; 19: 1063–1071.
Google Scholar | SAGE Journals | ISI26. Ju, R, Wen, Y, Gou, R, et al. The experimental therapy on brain ischemia by improvement of local angiogenesis with tissue engineering in the mouse. Cell Transplant 2014; 23 Suppl 1: S83–95.
Google Scholar | SAGE Journals27. Zhu, S, Nih, L, Carmichael, ST, et al. Enzyme-responsive delivery of multiple proteins with spatiotemporal control. Adv Mater 2015; 27: 3620–3625.
Google Scholar | Crossref | Medline28. Zhang, S, Gelain, F, Zhao, X, Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Semin Cancer Biol 2005; 15: 413–420.
Google Scholar | Crossref | Medline | ISI29. Zhang, SG. Emerging biological materials through molecular self-assembly. Biotechnol Adv 2002; 20: 321–339.
Google Scholar | Crossref | Medline | ISI30. Keyes-Baig, C, Duhamel, J, Fung, SY, et al. Self-assembling peptide as a potential carrier of hydrophobic compounds. J Am Chem Soc 2004; 126: 7522–7532.
Google Scholar | Crossref | Medline | ISI31. Zhang, SG. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 2003; 21: 1171–1178.
Google Scholar | Crossref | Medline | ISI32. Nagai, Y, Unsworth, LD, Koutsopoulos, S, et al. Slow release of molecules in self-assembling peptide nanofiber scaffold. J Control Release 2006; 115: 18–25.
Google Scholar | Crossref | Medline33. Guo, HD, Cui, GH, Yang, JJ, et al. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction. Biochem Biophys Res Commun 2012; 424: 105–111.
Google Scholar | Crossref | Medline | ISI34. Yokoi, H, Kinoshita, T, Zhang, S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A 2005; 102: 8414–8419.
Google Scholar | Crossref | Medline | ISI35. Zhang, S, Holmes, T, Lockshin, C, et al. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 1993; 90: 3334–3338.
Google Scholar | Crossref | Medline | ISI36. Percie Du Sert, N, Hurst, V, Ahluwalia, A, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. Exp Physiol 2020; 105: 1459–1466.
Google Scholar | Crossref | Medline37. Yanev, P, Jolkkonen, J, Airenne, KJ, et al. Enhanced angiogenesis and reduced infarct size by vascular endothelial growth factor D is not translated to behavioral outcome in a rat model of ischemic stroke. J Exp Stroke Transl Med 2010; 3: 1–12.
Google Scholar | Crossref | Medline38. Paxinos, G, Watson, C. The rat brain in stereotaxic coordinates. 6th ed. San Diego, California: Academic Press, Elsevier, 2007.
Google Scholar39. Yanev, P, Jolkkonen, J, Airenne, K, et al. Enhanced angiogenesis and reduced infarct size by vascular endothelial growth factor D is not translated to behavioral outcome in a rat model of ischemic stroke. J Exp Stroke Transl Med 2010; 3: 1–12.
Google Scholar | Crossref | Medline40. Puurunen, K, Jolkkonen, J, Sirvio, J, et al. Selegiline combined with enriched-environment housing attenuates spatial learning deficits following focal cerebral ischemia in rats. Exp Neurol 2001; 167: 348–355.
Google Scholar | Crossref | Medline | ISI41. Kamdi, S, Krishna, R. Image segmentation and region growing algorithm. Int J Comput Technol Electron Eng 2012; 2: 103–107.
Google Scholar42. Passat, N, Ronse, C, Baruthio, J, et al. Region-growing segmentation of brain vessels: an atlas-based automatic approach. J Magn Reson Imaging 2005; 21: 715–725.
Google Scholar | Crossref | Medline43. Behrens, TE, Woolrich, MW, Jenkinson, M, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med 2003; 50: 1077–1088.
Google Scholar | Crossref | Medline | ISI44. Behrens, TE, Berg, HJ, Jbabdi, S, et al. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 2007; 34: 144–155.
Google Scholar | Crossref | Medline | ISI45. Jbabdi, S, Sotiropoulos, SN, Savio, AM, et al. Model-based analysis of multishell diffusion MR data for tractography: how to get over fitting problems. Magn Reson Med 2012; 68: 1846–1855.
Google Scholar | Crossref | Medline | ISI46. Rudrapatna, S, Peterson, D, Missiuna, P, et al. Understanding muscle-immune interactions in adolescent idiopathic scoliosis: a feasibility study. Pilot Feasibility Stud 2017; 3: 50.
Google Scholar | Crossref | Medline47. Dennie, J, Mandeville, JB, Boxerman, JL, et al. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med 1998; 40: 793–799.
Google Scholar | Crossref | Medline | ISI48. Boxerman, JL, Hamberg, LM, Rosen, BR, et al. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 1995; 34: 555–566.
Google Scholar | Crossref |

留言 (0)

沒有登入
gif