MicroRNA regulation of BAG3

1. Kogel, D, Linder, B, Brunschweiger, A, Chines, S, Behl, C. At the crossroads of apoptosis and autophagy: multiple roles of the co-chaperone BAG3 in stress and therapy resistance of cancer. Cells 2020;9:574
Google Scholar | Crossref2. McClung, JM, McCord, TJ, Ryan, TE, Schmidt, CA, Green, TD, Southerland, KW, Reinardy, JL, Mueller, SB, Venkatraman, TN, Lascola, CD, Keum, S, Marchuk, DA, Spangenburg, EE, Dokun, A, Annex, BH, Kontos, CD. BAG3 (Bcl-2-Associated Athanogene-3) Coding variant in mice determines susceptibility to ischemic limb muscle myopathy by directing autophagy. Circulation 2017;136:281–96
Google Scholar | Crossref | Medline3. Takayama, S, Sato, T, Krajewski, S, Kochel, K, Irie, S, Millan, JA, Reed, JC. Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell 1995;80:279–84
Google Scholar | Crossref | Medline4. Takayama, S, Xie, Z, Reed, JC. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem 1999;274:781–6
Google Scholar | Crossref5. Sherman, MY, Gabai, V. The role of Bag3 in cell signaling. J Cell Biochem. Epub ahead of print 23 July 2021; DOI: 10.1002/jcb.30111
Google Scholar | Crossref6. Linder, B, Klein, C, Hoffmann, ME, Bonn, F, Dikic, I, Kogel, D. BAG3 is a negative regulator of ciliogenesis in glioblastoma and triple-negative breast cancer cells. J Cell Biochem. Epub ahead of print 27 June 2021. DOI: 10.1002/jcb.30073
Google Scholar | Crossref7. Martin, TG, Myers, VD, Dubey, P, Dubey, S, Perez, E, Moravec, CS, Willis, MS, Feldman, AM, Kirk, JA. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat Commun 2021;12:2942
Google Scholar | Crossref | Medline8. Doong, H, Rizzo, K, Fang, S, Kulpa, V, Weissman, AM, Kohn, EC. CAIR-1/BAG-3 abrogates heat shock protein-70 chaperone complex-mediated protein degradation: accumulation of poly-ubiquitinated Hsp90 client proteins. J Biol Chem 2003;278:28490–500
Google Scholar | Crossref9. Li, C, An, MX, Jiang, JY, Yao, HB, Li, S, Yan, J, Li, XY, Wang, HQ. BAG3 suppresses loading of Ago2 to IL6 mRNA in pancreatic ductal adenocarcinoma. Front Oncol 2019;9:225
Google Scholar | Crossref | Medline10. Behl, C. Breaking BAG: the co-chaperone BAG3 in health and disease. Trends Pharmacol Sci 2016;37:672–88
Google Scholar | Crossref | Medline11. Lin, H, Koren, SA, Cvetojevic, G, Girardi, P, Johnson, GVW. The role of BAG3 in health and disease: a “Magic BAG of Tricks.” J Cell Biochem. Epub ahead of print 14 May 2021. DOI: 10.1002/jcb.29952
Google Scholar | Crossref12. Liu, L, Sun, K, Zhang, X, Tang, Y, Xu, D. Advances in the role and mechanism of BAG3 in dilated cardiomyopathy. Heart Fail Rev 2021;26:183–94
Google Scholar | Crossref13. Rosati, A, Graziano, V, De Laurenzi, V, Pascale, M, Turco, MC. BAG3: a multifaceted protein that regulates major cell pathways. Cell Death Dis 2011;2:e141
Google Scholar | Crossref14. Gentilella, A, Passiatore, G, Deshmane, S, Turco, MC, Khalili, K. Activation of BAG3 by Egr-1 in response to FGF-2 in neuroblastoma cells. Oncogene 2008;27:5011–8
Google Scholar | Crossref15. Zaragoza, C, Saura, M, Hernandez, I, Ramirez-Carracedo, R, Garcia-Garcia, F, Zamorano, JL, Mangas, A, Toro, R. Differential expression of circulating miRNAs as a novel tool to assess BAG3-associated familial dilated cardiomyopathy. Biosci Rep 2019;39:BSR20180934
Google Scholar | Crossref | Medline16. Ling, H, Fabbri, M, Calin, GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013;12:847–65
Google Scholar | Crossref | Medline17. Lytle, JR, Yario, TA, Steitz, JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc Natl Acad Sci U S A 2007;104:9667–72
Google Scholar | Crossref | Medline18. Ankasha, SJ, Shafiee, MN, Wahab, NA, Ali, RAR, Mokhtar, NM. Post-transcriptional regulation of microRNAs in cancer: from prediction to validation. Oncol Rev 2018;12:344
Google Scholar | Medline19. Jamaluddin, MS, Weakley, SM, Zhang, L, Kougias, P, Lin, PH, Yao, Q, Chen, C. miRNAs: roles and clinical applications in vascular disease. Expert Rev Mol Diagn 2011;11:79–89
Google Scholar | Crossref | Medline | ISI20. Chen, L, Okeke, E, Ayalew, D, Wang, D, Shahid, L, Dokun, AO. Modulation of miR29a improves impaired post-ischemic angiogenesis in hyperglycemia. Exp Biol Med (Maywood) 2017;242:1432–43
Google Scholar | SAGE Journals21. Figueira, MF, Monnerat-Cahli, G, Medei, E, Carvalho, AB, Morales, MM, Lamas, ME, da Fonseca, RN, Souza-Menezes, J. MicroRNAs: potential therapeutic targets in diabetic complications of the cardiovascular and renal systems. Acta Physiol (Oxf) 2014;211:491–500
Google Scholar | Crossref | Medline22. Qu, F, Wang, X. microRNA-340 induces apoptosis by downregulation of BAG3 in ovarian cancer SKOV3 cells. Pharmazie 2017;72:482–6
Google Scholar23. Wang, Y, Tian, Y. miR-206 inhibits cell proliferation, migration, and invasion by targeting BAG3 in human cervical cancer. Oncol Res 2018;26:923–31
Google Scholar | Crossref24. Flum, M, Kleemann, M, Schneider, H, Weis, B, Fischer, S, Handrick, R, Otte, K. miR-217-5p induces apoptosis by directly targeting PRKCI, BAG3, ITGAV and MAPK1 in colorectal cancer cells. J Cell Commun Signal 2018;12:451–66
Google Scholar | Crossref | Medline25. Fujiya, M, Konishi, H, Mohamed Kamel, MK, Ueno, N, Inaba, Y, Moriichi, K, Tanabe, H, Ikuta, K, Ohtake, T, Kohgo, Y. microRNA-18a induces apoptosis in colon cancer cells via the autophagolysosomal degradation of oncogenic heterogeneous nuclear ribonucleoprotein A1. Oncogene 2014;33:4847–56
Google Scholar | Crossref | Medline26. d’Avenia, M, Citro, R, De Marco, M, Veronese, A, Rosati, A, Visone, R, Leptidis, S, Philippen, L, Vitale, G, Cavallo, A, Silverio, A, Prota, C, Gravina, P, De Cola, A, Carletti, E, Coppola, G, Gallo, S, Provenza, G, Bossone, E, Piscione, F, Hahne, M, De Windt, LJ, Turco, MC, De Laurenzi, V. A novel miR-371a-5p-mediated pathway, leading to BAG3 upregulation in cardiomyocytes in response to epinephrine, is lost in Takotsubo cardiomyopathy. Cell Death Dis 2015;6:e1948
Google Scholar | Crossref | Medline27. Agarwal, V, Bell, GW, Nam, JW, Bartel, DP. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015;4:e05005
Google Scholar | Crossref28. Chen, Y, Wang, X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020;48:D127–31
Google Scholar | Crossref29. Sticht, C, De La Torre, C, Parveen, A, Gretz, N. miRWalk: an online resource for prediction of microRNA binding sites. PLoS ONE 2018;13:e0206239
Google Scholar | Crossref30. Ghasemi Tahrir, F, Gupta, M, Myers, V, Gordon, J, Cheung, JY, Feldman, AM, Khalili, K. Role of Bcl2-associated athanogene 3 in turnover of gap junction protein, connexin 43, in neonatal cardiomyocytes. Scientific Reports 2019;9:7658
Google Scholar | Crossref | Medline31. Homma, S, Iwasaki, M, Shelton, GD, Engvall, E, Reed, JC, Takayama, S. BAG3 deficiency results in fulminant myopathy and early lethality. Am J Pathol 2006;169:761–73
Google Scholar | Crossref32. McCarthy, JJ. The MyomiR network in skeletal muscle plasticity. Exerc Sport Sci Rev 2011;39:150–4
Google Scholar | Crossref | Medline33. McCarthy, JJ. MicroRNA-206: the skeletal muscle-specific myomiR. Biochim Biophys Acta 2008;1779:682–91
Google Scholar | Medline34. Takada, S, Berezikov, E, Yamashita, Y, Lagos-Quintana, M, Kloosterman, WP, Enomoto, M, Hatanaka, H, Fujiwara, S, Watanabe, H, Soda, M, Choi, YL, Plasterk, RH, Cuppen, E, Mano, H. Mouse microRNA profiles determined with a new and sensitive cloning method. Nucleic Acids Res 2006;34:e115
Google Scholar | Crossref | Medline35. McCarthy, JJ, Esser, KA, Andrade, FH. MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb muscle of mdx mouse. Am J Physiol Cell Physiol 2007;293:C451–7
Google Scholar | Crossref | Medline36. Bulaklak, K, Xiao, B, Qiao, C, Li, J, Patel, T, Jin, Q, Li, J, Xiao, X. MicroRNA-206 downregulation improves therapeutic gene expression and motor function in mdx mice. Mol Ther Nucleic Acids 2018;12:283–93
Google Scholar | Crossref | Medline37. Yuasa, K, Hagiwara, Y, Ando, M, Nakamura, A, Takeda, S, Hijikata, T. MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct 2008;33:163–9
Google Scholar | Crossref | Medline38. Wang, L, Zhou, L, Jiang, P, Lu, L, Chen, X, Lan, H, Guttridge, DC, Sun, H, Wang, H. Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Mol Ther 2012;20:1222–33
Google Scholar | Crossref39. Wei, W, He, HB, Zhang, WY, Zhang, HX, Bai, JB, Liu, HZ, Cao, JH, Chang, KC, Li, XY, Zhao, SH. miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development. Cell Death Dis 2013;4:e668
Google Scholar | Crossref40. Sugio, A, Iwasaki, M, Habata, S, Mariya, T, Suzuki, M, Osogami, H, Tamate, M, Tanaka, R, Saito, T. BAG3 upregulates Mcl-1 through downregulation of miR-29b to induce anticancer drug resistance in ovarian cancer. Gynecol Oncol 2014;134:615–23
Google Scholar | Crossref | Medline41. Marzullo, L, Turco, MC, De Marco, M. The multiple activities of BAG3 protein: mechanisms. Biochim Biophys Acta Gen Subj 2020;1864:129628
Google Scholar | Crossref | Medline42. De Marco, M, Basile, A, Iorio, V, Festa, M, Falco, A, Ranieri, B, Pascale, M, Sala, G, Remondelli, P, Capunzo, M, Firpo, MA, Pezzilli, R, Marzullo, L, Cavallo, P, De Laurenzi, V, Turco, MC, Rosati, A. Role of BAG3 in cancer progression: a therapeutic opportunity. Semin Cell Dev Biol 2018;78:85–92
Google Scholar | Crossref | Medline43. Romano, MF, Festa, M, Pagliuca, G, Lerose, R, Bisogni, R, Chiurazzi, F, Storti, G, Volpe, S, Venuta, S, Turco, MC, Leone, A. BAG3 protein controls B-chronic lymphocytic leukemia cell apoptosis. Cell Death Differ 2003;10:383–5
Google Scholar | Crossref | Medline44. Festa, M, Del Valle, L, Khalili, K, Franco, R, Scognamiglio, G, Graziano, V, De Laurenzi, V, Turco, MC, Rosati, A. BAG3 protein is overexpressed in human glioblastoma and is a potential target for therapy. Am J Pathol 2011;178:2504–12
Google Scholar | Crossref | Medline45. Zhang, W, Li, R, Li, J, Wang, W, Tie, R, Tian, F, Liang, X, Xing, W, He, Y, Yu, L, Xi, M, Wang, S, Zheng, Q, Zhang, H. Alpha-linolenic acid exerts an endothelial protective effect against high glucose injury via PI3K/Akt pathway. PLoS ONE 2013;8:e68489
Google Scholar46. Yan, J, Liu, C, Jiang, JY, Liu, H, Li, C, Li, XY, Yuan, Y, Zong, ZH, Wang, HQ. BAG3 promotes proliferation of ovarian cancer cells via post-transcriptional regulation of Skp2 expression. Biochim Biophys Acta Mol Cell Res 2017;1864:1668–78
Google Scholar | Crossref47. Liu, J, Qu, CB, Xue, YX, Li, Z, Wang, P, Liu, YH. MiR-143 enhances the antitumor activity of shikonin by targeting BAG3 expression in human glioblastoma stem cells. Biochem Biophys Res Commun 2015;468:105–12
Google Scholar | Crossref48. Srivastava, SK, Bhardwaj, A, Arora, S, Tyagi, N, Singh, S, Andrews, J, McClellan, S, Wang, B, Singh, AP. MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br J Cancer 2015;113:660–8
Google Scholar | Crossref49. Lee, JH, Takahashi, T, Yasuhara, N, Inazawa, J, Kamada, S, Tsujimoto, Y. Bis, a Bcl-2-binding protein that synergizes with Bcl-2 in preventing cell death. Oncogene 1999;18:6183–90
Google Scholar | Crossref50. Feldman, AM, Gordon, J, Wang, J, Song, J, Zhang, XQ, Myers, VD, Tilley, DG, Gao, E, Hoffman, NE, Tomar, D, Madesh, M, Rabinowitz, J, Koch, WJ, Su, F, Khalili, K, Cheung, JY. BAG3 regulates contractility and Ca(2+) homeostasis in adult mouse ventricular myocytes. J Mol Cell Cardiol 2016;92:10–20
Google Scholar | Crossref | Medline51. Judge, LM, Perez-Bermejo, JA, Truong, A, Ribeiro, AJ, Yoo, JC, Jensen, CL, Mandegar, MA, Huebsch, N, Kaake, RM, So, PL, Srivastava, D, Pruitt, BL, Krogan, NJ, Conklin, BR. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress. JCI Insight 2017;2:e94623
Google Scholar | Crossref52. Tahrir, FG, Knezevic, T, Gupta, MK, Gordon, J, Cheung, JY, Feldman, AM, Khalili, K. Evidence for the role of BAG3 in mitochondrial quality control in cardiomyocytes. J Cell Physiol 2017;232:797–805
Google Scholar | Crossref | Medline53. Pagliuca, MG, Lerose, R, Cigliano, S, Leone, A. Regulation by heavy metals and temperature of the human BAG-3 gene, a modulator of Hsp70 activity. FEBS Lett 2003;541:11–5
Google Scho

留言 (0)

沒有登入
gif