Metabolic analysis of infants with bronchopulmonary dysplasia under early nutrition therapy: An observational cohort study

1. Anderson, PJ, Doyle, LW. Neurodevelopmental outcome of bronchopulmonary dysplasia. Semin Perinatol 2006; 30:227–32
Google Scholar | Crossref | Medline2. Farooqi, A, Hagglof, B, Sedin, G, Serenius, F. Impact at age 11 years of major neonatal morbidities in children born extremely preterm. Pediatrics 2011; 127:e1247–57
Google Scholar | Crossref | Medline3. Stoll, BJ, Hansen, NI, Bell, EF, Shankaran, S, Laptook, AR, Walsh, MC, Hale, EC, Newman, NS, Schibler, K, Carlo, WA, Kennedy, KA, Poindexter, BB, Finer, NN, Ehrenkranz, RA, Duara, S, Sanchez, PJ, O'Shea, TM, Goldberg, RN, Van Meurs, KP, Faix, RG, Phelps, DL, Frantz, ID, Watterberg, KL, Saha, S, Das, A, Higgins, RD. Eunice Kennedy Shriver National Institute of Child H, Human Development Neonatal Research N. Neonatal outcomes of extremely preterm infants from the NICHD neonatal research network. Pediatrics 2010; 126:443–56
Google Scholar | Crossref | Medline | ISI4. Klevebro, S, Westin, V, Stoltz Sjostrom, E, Norman, M, Domellof, M, Edstedt Bonamy, AK, Hallberg, B. Early energy and protein intakes and associations with growth, BPD, and ROP in extremely preterm infants. Clin Nutr 2019; 38:1289–95
Google Scholar | Crossref | Medline5. Zhao, H, Dennery, PA, Yao, H. Metabolic reprogramming in the pathogenesis of chronic lung diseases, including BPD, COPD, and pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018; 314:L544–L54
Google Scholar | Crossref | Medline6. Agathocleous, M, Harris, WA. Metabolism in physiological cell proliferation and differentiation. Trends Cell Biol 2013; 23:484–92
Google Scholar | Crossref | Medline7. Xie, N, Tan, Z, Banerjee, S, Cui, H, Ge, J, Liu, RM, Bernard, K, Thannickal, VJ, Liu, G. Glycolytic reprogramming in myofibroblast differentiation and lung fibrosis. Am J Respir Crit Care Med 2015; 192:1462–74
Google Scholar | Crossref | Medline | ISI8. Wang, L, Liu, D, Shen, H, Wang, Y, Han, L, He, Z. Analysis of amino acid patterns with nutrition regimens in preterm infants with extrauterine growth retardation. Front Pediatr 2020; 8:184
Google Scholar | Crossref | Medline9. Baraldi, E, Giordano, G, Stocchero, M, Moschino, L, Zaramella, P, Tran, MR, Carraro, S, Romero, R, Gervasi, MT. Untargeted metabolomic analysis of amniotic fluid in the prediction of preterm delivery and bronchopulmonary dysplasia. PLoS One 2016; 11:e0164211
Google Scholar | Crossref | Medline10. Piersigilli, F, Lam, TT, Vernocchi, P, Quagliariello, A, Putignani, L, Aghai, ZH, Bhandari, V. Identification of new biomarkers of bronchopulmonary dysplasia using metabolomics. Metabolomics 2019; 15:20
Google Scholar | Crossref | Medline11. Yao, H, Gong, J, Peterson, AL, Lu, X, Zhang, P, Dennery, PA. Fatty acid oxidation protects against hyperoxia-induced endothelial cell apoptosis and lung injury in neonatal mice. Am J Respir Cell Mol Biol 2019; 60:667–77
Google Scholar | Crossref | Medline12. Peterson, AL, Carr, JF, Ji, X, Dennery, PA, Yao, H. Hyperoxic exposure caused lung lipid compositional changes in neonatal mice. Metabolites 2020; 10:340
Google Scholar | Crossref13. Fenton, TR, Kim, JH. A systematic review and meta-analysis to revise the fenton growth chart for preterm infants. BMC Pediatr 2013; 13:59
Google Scholar | Crossref | Medline | ISI14. Jobe, AH, Bancalari, E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001; 163:1723–9
Google Scholar | Crossref | Medline15. Higgins, RD, Jobe, AH, Koso-Thomas, M, Bancalari, E, Viscardi, RM, Hartert, TV, Ryan, RM, Kallapur, SG, Steinhorn, RH, Konduri, GG, Davis, SD, Thebaud, B, Clyman, RI, Collaco, JM, Martin, CR, Woods, JC, Finer, NN, Raju, TNK. Bronchopulmonary dysplasia: executive summary of a workshop. J Pediatr 2018; 197:300–8
Google Scholar | Crossref | Medline16. Uberos, J, Jimenez-Montilla, S, Molina-Oya, M, Garcia-Serrano, JL. Early energy restriction in premature infants and bronchopulmonary dysplasia: a cohort study. Br J Nutr 2020; 123:1024–31
Google Scholar | Crossref | Medline17. Carraro, S, Giordano, G, Pirillo, P, Maretti, M, Reniero, F, Cogo, PE, Perilongo, G, Stocchero, M, Baraldi, E. Airway metabolic anomalies in adolescents with bronchopulmonary dysplasia: new insights from the metabolomic approach. J Pediatr 2015; 166:234–9 e1
Google Scholar | Crossref | Medline18. Lal, CV, Bhandari, V, Ambalavanan, N. Genomics, microbiomics, proteomics, and metabolomics in bronchopulmonary dysplasia. Semin Perinatol 2018; 42:425–31
Google Scholar | Crossref | Medline19. Miller, M, Vaidya, R, Rastogi, D, Bhutada, A, Rastogi, S. From parenteral to enteral nutrition: a nutrition-based approach for evaluating postnatal growth failure in preterm infants. JPEN J Parenter Enteral Nutr 2014; 38:489–97
Google Scholar | Crossref | Medline20. Andersen, JL, Kornbluth, S. The tangled circuitry of metabolism and apoptosis. Mol Cell 2013; 49:399–410
Google Scholar | Crossref | Medline21. Ho, TT, Warr, MR, Adelman, ER, Lansinger, OM, Flach, J, Verovskaya, EV, Figueroa, ME, Passegue, E. Autophagy maintains the metabolism and function of young and old stem cells. Nature 2017; 543:205–10
Google Scholar | Crossref | Medline22. Kurzner, SI, Garg, M, Bautista, DB, Bader, D, Merritt, RJ, Warburton, D, Keens, TG. Growth failure in infants with bronchopulmonary dysplasia: nutrition and elevated resting metabolic expenditure. Pediatrics 1988; 81:379–84
Google Scholar | Medline23. Ratner, V, Starkov, A, Matsiukevich, D, Polin, RA, Ten, VS. Mitochondrial dysfunction contributes to alveolar developmental arrest in hyperoxia-exposed mice. Am J Respir Cell Mol Biol 2009; 40:511–8
Google Scholar | Crossref | Medline24. Bao, EL, Chystsiakova, A, Brahmajothi, MV, Sunday, ME, Pavlisko, EN, Wempe, MF, Auten, RL. Bronchopulmonary dysplasia impairs L-type amino acid transporter-1 expression in human and baboon lung. Pediatr Pulmonol 2016; 51:1048–56
Google Scholar | Crossref | Medline25. Vadivel, A, Aschner, JL, Rey-Parra, GJ, Magarik, J, Zeng, H, Summar, M, Eaton, F, Thebaud, B. L-citrulline attenuates arrested alveolar growth and pulmonary hypertension in oxygen-induced lung injury in newborn rats. Pediatr Res 2010; 68:519–25
Google Scholar | Crossref | Medline | ISI26. Grisafi, D, Tassone, E, Dedja, A, Oselladore, B, Masola, V, Guzzardo, V, Porzionato, A, Salmaso, R, Albertin, G, Artusi, C, Zaninotto, M, Onisto, M, Milan, A, Macchi, V, De Caro, R, Fassina, A, Bordigato, MA, Chiandetti, L, Filippone, M, Zaramella, P. L-citrulline prevents alveolar and vascular derangement in a rat model of moderate hyperoxia-induced lung injury. Lung 2012; 190:419–30
Google Scholar | Crossref | Medline27. Ma, L, Zhou, P, Neu, J, Lin, HC. Potential nutrients for preventing or treating bronchopulmonary dysplasia. Paediatr Respir Rev 2017; 22:83–8
Google Scholar | Medline28. Heckmann, M, Kreuder, J, Riechers, K, Tsikas, D, Boedeker, RH, Reiss, I, Gortner, L. Plasma arginine and urinary nitrate and nitrite excretion in bronchopulmonary dysplasia. Biol Neonate 2004; 85:173–8
Google Scholar | Crossref | Medline29. Sopi, RB, Zaidi, SI, Mladenov, M, Sahiti, H, Istrefi, Z, Gjorgoski, I, Lajci, A, Jakupaj, M. L-citrulline supplementation reverses the impaired airway relaxation in neonatal rats exposed to hyperoxia. Respir Res 2012; 13:68
Google Scholar | Crossref | Medline30. Hensley, CT, Wasti, AT, DeBerardinis, RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest 2013; 123:3678–84
Google Scholar | Crossref | Medline | ISI31. Robbins, ME, Cho, HY, Hansen, JM, Luchsinger, JR, Locy, ML, Velten, M, Kleeberger, SR, Rogers, LK, Tipple, TE. Glutathione reductase deficiency alters lung development and hyperoxic responses in neonatal mice. Redox Biol 2021; 38:101797
Google Scholar | Crossref | Medline32. Moe-Byrne, T, Brown, JV, McGuire, W. Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2016; 4:CD001457
Google Scholar | Medline33. Brown, JV, Moe-Byrne, T, McGuire, W. Glutamine supplementation for young infants with severe gastrointestinal disease. Cochrane Database Syst Rev 2014; 12:CD005947
Google Scholar34. Ahmad, S, White, CW, Chang, LY, Schneider, BK, Allen, CB. Glutamine protects mitochondrial structure and function in oxygen toxicity. Am J Physiol Lung Cell Mol Physiol 2001; 280:L779–91
Google Scholar | Crossref | Medline | ISI35. Perng, WC, Huang, KL, Li, MH, Hsu, CW, Tsai, SH, Chu, SJ, Chang, DM. Glutamine attenuates hyperoxia-induced acute lung injury in mice. Clin Exp Pharmacol Physiol 2010; 37:56–61
Google Scholar | Crossref | Medline36. La Frano, MR, Fahrmann, JF, Grapov, D, Pedersen, TL, Newman, JW, Fiehn, O, Underwood, MA, Mestan, K, Steinhorn, RH, Wedgwood, S. Umbilical cord blood metabolomics reveal distinct signatures of dyslipidemia prior to bronchopulmonary dysplasia and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2018; 315:L870–L81
Google Scholar | Crossref | Medline37. Fanos, V, Pintus, MC, Lussu, M, Atzori, L, Noto, A, Stronati, M, Guimaraes, H, Marcialis, MA, Rocha, G, Moretti, C, Papoff, P, Lacerenza, S, Puddu, S, Giuffre, M, Serraino, F, Mussap, M, Corsello, G. Urinary metabolomics of bronchopulmonary dysplasia (BPD): preliminary data at birth suggest it is a congenital disease. J Matern Fetal Neonatal Med 2014; 27:39–45
Google Scholar | Crossref | Medline38. Pintus, MC, Lussu, M, Dessi, A, Pintus, R, Noto, A, Masile, V, Marcialis, MA, Puddu, M, Fanos, V, Atzori, L. Urinary (1)H-NMR metabolomics in the first week of life can anticipate BPD diagnosis. Oxid Med Cell Longev 2018; 2018:7620671
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif