1. Harada, S, Morlote, D. Molecular pathology of colorectal cancer. Adv Anat Pathol 2020; 27:20–6
Google Scholar |
Crossref |
Medline2. Ladabaum, U, Dominitz, JA, Kahi, C, Schoen, RE. Strategies for colorectal cancer screening. Gastroenterology 2020; 158:418–32
Google Scholar |
Crossref |
Medline3. Dekker, E, Tanis, PJ, Vleugels, JLA, Kasi, PM, Wallace, MB. Colorectal cancer. Lancet (London, England) 2019; 394:1467–80
Google Scholar |
Crossref |
Medline4. Chan, HP, Samala, RK, Hadjiiski, LM, Zhou, C. Deep learning in medical image analysis. Adv Exp Med Biol 2020; 1213:3–21
Google Scholar |
Crossref |
Medline5. Pacal, I, Karaboga, D, Basturk, A, Akay, B, Nalbantoglu, U. A comprehensive review of deep learning in colon cancer. Comput Biol Med 2020; 126:1–33
Google Scholar |
Crossref6. Sánchez-Peralta, LF, Bote-Curiel, L, Picón, A, Sánchez-Margallo, FM, Pagador, JB. Deep learning to find colorectal polyps in colonoscopy: a systematic literature review. Artif Intell Med 2020; 108:1–23
Google Scholar |
Crossref7. Hutter, C, Zenklusen, JC. The cancer genome atlas: creating lasting value beyond its data. Cell 2018; 173:283–5
Google Scholar |
Crossref |
Medline8. Ma, T, Zhang, A. Integrate multi-omics data with biological interaction networks using multi-view factorization AutoEncoder (MAE). BMC Genom 2019; 20:1–11
Google Scholar |
Crossref |
Medline9. Huang, Z, Zhan, X, Xiang, S, Johnson, TS, Helm, B, Yu, CY, Zhang, J, Salama, P, Rizkalla, M, Han, Z, Huang, K. SALMON: survival analysis learning with multi-omics neural networks on breast cancer. Front Genet 2019; 10:1–13
Google Scholar |
Crossref |
Medline10. Zhang, L, Lv, C, Jin, Y, Cheng, G, Fu, Y, Yuan, D, Tao, Y, Guo, Y, Ni, X, Shi, T. Deep learning-based multi-omics data integration reveals two prognostic subtypes in high-risk neuroblastoma. Front Genet 2018; 9:1–9
Google Scholar |
Crossref |
Medline11. Xu, X, Gu, H, Wang, Y, Wang, J, Qin, P. Autoencoder based feature selection method for classification of anticancer drug response. Front Genet 2019; 10:1–10
Google Scholar |
Crossref |
Medline12. Chaudhary, K, Poirion, OB, Lu, L, Garmire, LX. Deep learning-based multi-omics integration robustly predicts survival in liver cancer. Clin Cancer Res 2018; 24:1248–59
Google Scholar |
Crossref |
Medline13. IlluminaHumanMethylation450kanno HKilmn12 . hg19: annotation for illumina's 450k methylation arrays. 2015. R package, version 02.
Google Scholar14. Moorthy, K, Jaber, AN, Ismail, MA, Ernawan, F, Mohamad, MS, Deris, S. Missing-values imputation algorithms for microarray gene expression data. Meth Mol Biol (Clifton, NJ) 2019; 1986:255–66
Google Scholar |
Crossref |
Medline15. Charrad, M, Ghazzali, N, Boiteau, V, Niknafs, A. NbClust: an R package for determining the relevant number of clusters in a data set. Journal of Statal Software 2014; 061:1–36
Google Scholar16. Cheung, LC, Pan, Q, Hyun, N, Katki, HA. Prioritized concordance index for hierarchical survival outcomes. 2019; 38:2868–82
Google Scholar |
Crossref17. Schröder, MS, Culhane, AC, Quackenbush, J, Haibe-Kains, B. Survcomp: an R/bioconductor package for performance assessment and comparison of survival models. Bioinformatics (Oxford, England) 2011; 27:3206–8
Google Scholar |
Crossref |
Medline18. Gerds, TA, Schumacher, M. Consistent estimation of the expected brier score in general survival models with right-censored event times. Biom J 2010; 48:1029–40
Google Scholar |
Crossref19. Becker, N, Werft, W, Toedt, G, Lichter, P, Benner, A. penalizedSVM: a R-package for feature selection SVM classification. Bioinformatics 2009; 25:1711–2
Google Scholar |
Crossref |
Medline20. Love, MI, Huber, W, Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:1–21
Google Scholar |
Crossref21. Ritchie, ME, Phipson, B, Wu, D, Hu, Y, Law, CW, Shi, W, Smyth, GK. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 2015; 43:1–13
Google Scholar |
Crossref |
Medline22. Chen, Y, Wang, X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res 2020; 48:D127–d31
Google Scholar |
Crossref |
Medline23. Xie, C, Mao, X, Huang, J, Ding, Y, Wu, J, Dong, S, Kong, L, Gao, G, Li, CY, Wei, L. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011; 39:316–22
Google Scholar |
Crossref |
Medline |
ISI24. Lim, LC, Lim, YM. Proteome heterogeneity in colorectal cancer. Proteomics 2018; 18:1–39
Google Scholar |
Crossref25. Punt, CJ, Koopman, M, Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol 2017; 14:235–46
Google Scholar |
Crossref |
Medline26. Huang, S, Chaudhary, K, Garmire, LX. More is better: recent progress in multi-omics data integration methods. Front Genet 2017; 8:1–12
Google Scholar |
Crossref |
Medline27. Wang, F, Han, J. Multimodal biometric authentication based on score level fusion using support vector machine. Opto-Electronics Rev 2009; 17:59–64
Google Scholar |
Crossref28. Yu, S, Príncipe, JC. Understanding autoencoders with information theoretic concepts. Neural Netw 2019; 117:104–23
Google Scholar |
Crossref |
Medline29. Zhou, XG, Huang, XL, Liang, SY, Tang, SM, Wu, SK, Huang, TT, Mo, ZN, Wang, QY. Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis. Onco Targets Ther 2018; 11:2815–30
Google Scholar |
Crossref |
Medline30. Yan, M, Song, M, Bai, R, Cheng, S, Yan, W. Identification of potential therapeutic targets for colorectal cancer by bioinformatics analysis. Oncol Lett 2016; 12:5092–8
Google Scholar |
Crossref |
Medline31. Li, Z, Pan, W, Shen, Y, Chen, Z, Zhang, L, Zhang, Y, Luo, Q, Ying, X. IGF1/IGF1R and microRNA let-7e down-regulate each other and modulate proliferation and migration of colorectal cancer cells. Cell Cycle (Georgetown, Tex) 2018; 17:1212–9
Google Scholar |
Crossref |
Medline32. Shan, Y, Liu, Y, Zhao, L, Liu, B, Li, Y, Jia, L. MicroRNA-33a and let-7e inhibit human colorectal cancer progression by targeting ST8SIA1. Int J Biochem Cell Biol 2017; 90:48–58
Google Scholar |
Crossref |
Medline33. Lu, CH, Wu, WY, Lai, YJ, Yang, CM, Yu, LC. Suppression of B3GNT7 gene expression in colon adenocarcinoma and its potential effect in the metastasis of colon cancer cells. Glycobiology 2014; 24:359–67
Google Scholar |
Crossref |
Medline34. Murase, R, Taketomi, Y, Miki, Y, Nishito, Y, Saito, M, Fukami, K, Yamamoto, K, Murakami, M. Group III phospholipase A(2) promotes colitis and colorectal cancer. Sci Rep 2017; 7:1–13
Google Scholar |
Crossref |
Medline35. Zhang, T, Guan, G, Chen, T, JJ, Zhang, L, Yao, M, Qi, X, Zou, J, Chen, J, Lu, F, Chen, X. Methylation of PCDH19 predicts poor prognosis of hepatocellular carcinoma. 2018; 14:e352–e58
Google Scholar |
Crossref36. Yao, X, Zhang, H, Liu, Y, Liu, X, Wang, X, Sun, X, Cheng, Y. miR-99b-3p promotes hepatocellular carcinoma metastasis and proliferation by targeting protocadherin 19. Gene 2019; 698:141–9
Google Scholar |
Crossref |
Medline37. Hua, Y, Ma, X, Liu, X, Yuan, X, Qin, H, Zhang, X. Identification of the potential biomarkers for the metastasis of rectal adenocarcinoma. Apmis 2017; 125:93–100
Google Scholar |
Crossref |
Medline38. Watson, KM, Gardner, IH, Byrne, RM, Ruhl, RR, Lanciault, CP, Dewey, EN, Anand, S, Tsikitis, VL. Differential expression of PEG10 contributes to aggressive disease in early versus late-onset colorectal cancer. Dis Colon Rectum 2020; 63:1610–20
Google Scholar |
Crossref |
Medline39. Itatani, Y, Kawada, K. Transforming growth factor-β signaling pathway in colorectal cancer and its tumor microenvironment. Int J Mol Sci 2019; 20:1–16
Google Scholar |
Crossref40. Nagaoka, K, Fujii, K, Zhang, H, Usuda, K, Watanabe, G, Ivshina, M, Richter, JD. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene 2016; 35:2893–901
Google Scholar |
Crossref |
Medline41. Gu, J, Wang, G. SATB2 targeted by methylated miR-34c-5p suppresses proliferation and metastasis attenuating the epithelial-mesenchymal transition in colorectal cancer. Cell Prolif 2018; 51:1–12
Google Scholar |
Crossref42. Chioni, AM, Brackenbury, WJ, Calhoun, JD, Isom, LL, Djamgoz, MB. A novel adhesion molecule in human breast cancer cells: voltage-gated Na+ channel beta1 subunit. Int J Biochem Cell Biol 2009; 41:1216–27
Google Scholar |
Crossref |
Medline43. Uboveja, A, Satija, YK, Siraj, F, Sharma, I, Saluja, D. p73-NAV3 axis plays a critical role in suppression of colon cancer metastasis. Oncogenesis 2020; 9:1–15
Google Scholar |
Crossref |
Medline44. Carlsson, E, Ranki, A, Sipilä, L, Karenko, L, Abdel-Rahman, WM, Ovaska, K, Siggberg, L, Aapola, U, Ässämäki, R, Häyry, V, Niiranen, K, Helle, M, Knuutila, S, Hautaniemi, S, Peltomäki, P, Krohn, K. Potential role of a navigator gene NAV3 in colorectal cancer. Br J Cancer 2012; 106:517–24
Google Scholar |
Crossref |
Medline45. Leithner, K, Hirschmugl, B, Li, Y, Tang, B, Papp, R, Nagaraj, C, Stacher, E, Stiegler, P, Lindenmann, J, Olschewski, A, Olschewski, H, Hrzenjak, A. TASK-1 regulates apoptosis and proliferation in a subset of non-small cell lung cancers. PloS One 2016; 11:1–18
Google Scholar |
Crossref46. Li, Y, Bai, L, Yu, H, Cai, D, Wang, X, Huang, B, Peng, S, Huang, M, Cao, G, Kaz, AM, Grady, WM, Wang, J, Luo, Y. Epigenetic inactivation of á-inter-nexin accelerates microtubule polymerization in colorectal cancer. Cancer Res 2020; 80:5203–15
Google Scholar |
Crossref |
Medline47. Komatsu, H, Kakehashi, A, Nishiyama, N, Izumi, N, Mizuguchi, S, Yamano, S, Inoue, H, Hanada, S, Chung, K, Wei, M, Suehiro, S, Wanibuchi, H. Complexin-2 (CPLX2) as a potential prognostic biomarker in human lung high grade neuroendocrine tumors. Cbm 2013; 13:171–80
Google Scholar |
Crossref48. Lv, LV, Zhou, J, Lin, C, Hu, G, Yi, LU, Du, J, Gao, K, Li, X. DNA methylation is involved in the aberrant expression of miR-133b in colorectal cancer cells. Oncol Lett 2015; 10:907–12
Google Scholar |
Crossref |
Medline49. Lv, L, Li, Q, Chen, S, Zhang, X, Tao, X, Tang, X, Wang, S, Che, G, Yu, Y, He, L. miR-133b suppresses colorectal cancer cell stemness and chemoresistance by targeting methyltransferase DOT1L. Exp Cell Res 2019; 385:1–25
Google Scholar |
Crossref50. Falch, CM, Sundaram, AYM, Øystese, KA, Normann, KR, Lekva, T, Silamikelis, I, Eieland, AK, Andersen, M, Bollerslev, J, Olarescu, NC. Gene expression profiling of fast- and slow-growing non-functioning gonadotroph pituitary adenomas. Eur J Endocrinol 2018; 178:295–307
Google Scholar |
Crossref |
Medline51. Monteleone, MC, Adrover, E, Pallarés, ME, Antonelli, MC, Frasch, AC, Brocco, MA. Prenatal stress changes the glycoprotein GPM6A gene expression and induces epigenetic changes in rat offspring brain. Epigenetics 2014; 9:152–60
Google Scholar |
Crossref |
留言 (0)