Mild hypobaric hypoxia influences splenic proliferation during the later phase of stress erythropoiesis

1. Robinson, Y, Hostmann, A, Matenov, A, Ertel, W, Oberholzer, A. Erythropoiesis in multiply injured patients. J Trauma 2006; 61:1285–91
Google Scholar | Crossref | Medline2. Lakkavaram, A, Lundie, RJ, Do, H, Ward, AC, de Koning-Ward, TF. Acute Plasmodium berghei mouse infection elicits perturbed erythropoiesis with features that overlap with anemia of chronic disease. Front Microbiol 2020; 11:702
Google Scholar | Crossref | Medline3. Baumann, G, Travieso, L, Liebl, DJ, Theus, MH. Pronounced hypoxia in the subventricular zone following traumatic brain injury and the neural stem/progenitor cell response. Exp Biol Med (Maywood) 2013; 238:830–41
Google Scholar | SAGE Journals | ISI4. Roy, S, Kumaravel, S, Sharma, A, Duran, CL, Bayless, KJ, Chakraborty, S. Hypoxic tumor microenvironment: implications for cancer therapy. Exp Biol Med (Maywood) 2020; 245:1073–86
Google Scholar | SAGE Journals | ISI5. Höpfl, G, Ogunshola, O, Gassmann, M. Hypoxia and high altitude. The molecular response. Adv Exp Med Biol 2003; 543:89–115
Google Scholar | Crossref | Medline | ISI6. Hsieh, CH, Nickel, EA, Hsu, JT, Schwacha, MG, Bland, KI, Chaudry, IH. Trauma-hemorrhage and hypoxia differentially influence Kupffer cell phagocytic capacity: role of hypoxia-inducible-factor-1alpha and phosphoinositide 3-kinase/akt activation. Ann Surg 2009; 250:995–1001
Google Scholar | Crossref | Medline7. Perry, JM, Harandi, OF, Paulson, RF. BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood 2007; 109:4494–502
Google Scholar | Crossref | Medline | ISI8. Harandi, OF, Hedge, S, Wu, DC, McKeone, D, Paulson, RF. Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. J Clin Invest 2010; 120:4507–19
Google Scholar | Crossref | Medline9. Lenox, LE, Perry, JM, Paulson, RF. BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood 2005; 105:2741–8
Google Scholar | Crossref | Medline | ISI10. Paulson, RF, Hariharan, S, Little, JA. Stress erythropoiesis: definitions and models for its study. Exp Hematol 2020; 89:43–54.e2
Google Scholar | Crossref | Medline11. Liao, C, Prabhu, KS, Paulson, RF. Monocyte-derived macrophages expand the murine stress erythropoietic niche during the recovery from anemia. Blood 2018; 132:2580–93
Google Scholar | Crossref | Medline12. Bennett, LF, Liao, C, Quickel, MD, San Yeoh, B, Vijay-Kumar, M, Hankey-Giblin, P, Prabhu, KS, Paulson, RF. Inflammation induces stress erythropoiesis through heme-dependent activation of SPI-C. Sci Signal 2019; 12:eaap7336
Google Scholar | Crossref | Medline13. Millot, S, Andrieu, V, Letteron, P, Lyoumi, S, Hurtado-Nedelec, M, Karim, Z, Thibaudeau, O, Bennada, S, Charrier, JL, Lasocki, S, Beaumont, C. Erythropoietin stimulates spleen BMP4-dependent stress erythropoiesis and partially corrects anemia in a mouse model of generalized inflammation. Blood 2010; 116:6072–81
Google Scholar | Crossref | Medline | ISI14. Rosche, KL, Aljasham, AT, Kipfer, JN, Piatkowski, BT, Konjufca, V. Infection with Salmonella enterica Serovar Typhimurium leads to increased proportions of F4/80( + ) red pulp macrophages and decreased proportions of B and T lymphocytes in the spleen. PLoS One 2015; 10:e0130092
Google Scholar | Crossref | Medline15. Jackson, A, Nanton, MR, O’Donnell, H, Akue, AD, McSorley, SJ. Innate immune activation during Salmonella infection initiates extramedullary erythropoiesis and splenomegaly. J Immunol 2010; 185:6198–204
Google Scholar | Crossref | Medline | ISI16. Diwan, A, Koesters, AG, Capella, D, Geiger, H, Kalfa, TA, Dorn, GW Targeting erythroblast-specific apoptosis in experimental anemia. Apoptosis 2008; 13:1022–30
Google Scholar | Crossref | Medline17. Diwan, A, Koesters, AG, Odley, AM, Pushkaran, S, Baines, CP, Spike, BT, Daria, D, Jegga, AG, Geiger, H, Aronow, BJ, Molkentin, JD, Macleod, KF, Kalfa, TA, Dorn, GW., Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci U S A 2007; 104:6794–9
Google Scholar | Crossref | Medline | ISI18. Liu, Y, Pop, R, Sadegh, C, Brugnara, C, Haase, VH, Socolovsky, M. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood 2006; 108:123–33
Google Scholar | Crossref | Medline19. Shim, YA, Campbell, T, Weliwitigoda, A, Dosanjh, M, Johnson, P. Regulation of CD71( + )TER119( + ) erythroid progenitor cells by CD45. Exp Hematol 2020; 86:53–66.e1
Google Scholar | Crossref | Medline20. Youssef, LA, Rebbaa, A, Pampou, S, Weisberg, SP, Stockwell, BR, Hod, EA, Spitalnik, SL. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood 2018; 131:2581–93
Google Scholar | Crossref | Medline21. Klei, TR, Meinderts, SM, van den Berg, TK, van Bruggen, R. From the cradle to the grave: the role of macrophages in erythropoiesis and erythrophagocytosis. Front Immunol 2017; 8:73
Google Scholar | Crossref | Medline22. Beckmann, N, Huber, F, Hanschen, M, Schneider, BS, Nomellini, V, Caldwell, CC. Scald injury-induced T cell dysfunction can be mitigated by Gr1( + ) cell depletion and blockage of CD47/CD172a signaling. Front Immunol 2020; 11:876
Google Scholar | Crossref | Medline23. Koulnis, M, Pop, R, Porpiglia, E, Shearstone, JR, Hidalgo, D, Socolovsky, M. Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay. JoVE 2011; 54:2809
Google Scholar24. Chazaud, B. Inflammation and skeletal muscle regeneration: leave it to the macrophages! Trends Immunol 2020; 41:481–92
Google Scholar | Crossref | Medline25. Tidball, JG. Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 2011; 1:2029–62
Google Scholar | Crossref | Medline | ISI26. Dobek, GL, Fulkerson, ND, Nicholas, J, Schneider, BS. Mouse model of muscle crush injury of the legs. Comp Med 2013; 63:227–32
Google Scholar | Medline27. Voss, JG, Shagal, AG, Tsuji, JM, MacDonald, J, Bammler, TK, Farin, FM, Schneider, BS. Time course of inflammatory gene expression following crush injury in murine skeletal muscle. Nurs Res 2017; 66:63–74
Google Scholar | Crossref | Medline28. Makley, AT, Belizaire, R, Campion, EM, Goodman, MD, Sonnier, DI, Friend, LA, Schuster, RM, Bailey, SR, Johannigman, JA, Dorlac, WC, Lentsch, AB, Pritts, TA. Simulated aeromedical evacuation does not affect systemic inflammation or organ injury in a murine model of hemorrhagic shock. Mil Med 2012; 177:911–6
Google Scholar | Crossref | Medline29. Alamo, IG, Kannan, KB, Loftus, TJ, Ramos, H, Efron, PA, Mohr, AM. Severe trauma and chronic stress activates extramedullary erythropoiesis. J Trauma Acute Care Surg 2017; 83:144–50
Google Scholar | Crossref | Medline30. Crawley, PG. The critical care air transport experience. Curr Pulmonol Rep 2016; 5:77–85
Google Scholar | Crossref31. Johannigman, J, Gerlach, T, Cox, D, Juhasz, J, Britton, T, Elterman, J, Rodriquez, D, Blakeman, T, Branson, R. Hypoxemia during aeromedical evacuation of the walking wounded. J Trauma Acute Care Surg 2015; 79:S216–20
Google Scholar | Crossref | Medline32. Scultetus, AH, Jefferson, MA, Haque, A, Hubbell, JN, Arnaud, FG, Moon-Massat, P, McCarron, RM, Malone, D. Histopathological evidence of multiple organ damage after simulated aeromedical evacuation in a swine acute lung injury model. Mil Med 2020; 185:57–66
Google Scholar | Crossref | Medline33. Arnaud, F, Pappas, G, Maudlin-Jeronimo, E, Goforth, C. Simulated aeromedical evacuation in a polytrauma rat model. Aerosp Med Hum Perform 2019; 90:1016–25
Google Scholar | Crossref | Medline34. Zhao, LT, He, R, Long, HX, Guo, B, Jia, QZ, Qin, DY, Liu, SQ, Wang, ZY, Xiang, T, Zhang, J, Tan, YL, Huang, JN, Chen, JY, Wang, F, Xiao, ML, Gao, JB, Yang, XX, Zeng, H, Wang, XX, Hu, CY, Alexander, PB, Symonds, ALJ, Yu, J, Wan, YS, Li, QJ, Ye, LL, Zhu, B. Late-stage tumors induce anemia and immunosuppressive extramedullary erythroid progenitor cells. Nat Med 2018; 24:1536–44
Google Scholar | Crossref | Medline35. SAS Institute Inc. SAS/STAT® 14.3 user’s guide. Cary, NC: SAS Institute, Inc., 2017
Google Scholar36. Paulson, RF, Shi, L, Wu, D-C. Stress erythropoiesis: new signals and new stress progenitor cells. Curr Opin Hematol 2011; 18:139–45
Google Scholar | Crossref | Medline | ISI37. Stutte, HJ, Sakuma, T, Falk, S, Schneider, M. Splenic erythropoiesis in rats under hypoxic and post-hypoxic conditions. Virchows Arch A Pathol Anat Histopathol 1986; 409:251–61
Google Scholar | Crossref | Medline38. Kim, TS, Hanak, M, Trampont, PC, Braciale, TJ. Stress-associated erythropoiesis initiation is regulated by type 1 conventional dendritic cells. J Clin Invest 2015; 125:3965–80
Google Scholar | Crossref | Medline39. Zhang, J, Liu, Y, Han, X, Mei, Y, Yang, J, Zhang, ZJ, Lu, X, Ji, P. Rats provide a superior model of human stress erythropoiesis. Exp Hematol 2019; 78:21–34 e3
Google Scholar | Crossref | Medline40. Uchida, K, Naruse, K, Satoh, M, Onuma, K, Ueno, M, Takano, S, Urabe, K, Takaso, M. Increase of circulating CD11b( + )Gr1( + ) cells and recruitment into the synovium in osteoarthritic mice with hyperlipidemia. Exp Anim 2013; 62:255–65
Google Scholar | Crossref | Medline41. Luchette, FA, Robinson, BR, Friend, LA, McCarter, F, Frame, SB, James, JH. Adrenergic antagonists reduce lactic acidosis in response to hemorrhagic shock. J Trauma 1999; 46:873–80
Google Scholar | Crossref | Medline42. Luo, ST, Zhang, DM, Qin, Q, Lu, L, Luo, M, Guo, FC, Shi, HS, Jiang, L, Shao, B, Li, M, Yang, HS, Wei, YQ. The promotion of erythropoiesis via the regulation of reactive oxygen species by lactic acid. Sci Rep 2017; 7:38105
Google Scholar | Crossref | Medline43. Leliefeld, PHC, Koenderman, L, Pillay, J. How neutrophils shape adaptive immune responses. Front Immunol 2015; 6:471
Google Scholar | Crossref | Medline44. Costa, S, Bevilacqua, D, Cassatella, MA, Scapini, P. Recent advances on the crosstalk between neutrophils and B or T lymphocytes. Immunology 2019; 156:23–32
Google Scholar | Crossref | Medline45. Müller, I, Munder, M, Kropf, P, Hänsch, GM. Polymorphonuclear neutrophils and T lymphocytes: strange bedfellows or brothers in arms? Trends Immunol 2009; 30:522–30
Google Scholar | Crossref | Medline46. Pillay, J, Tak, T, Kamp, VM, Koenderman, L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci 2013; 70:3813–27
Google Scholar | Crossref | Medline47. de Kleijn, S, Langereis, JD, Leentjens, J, Kox, M, Netea, MG, Koenderman, L, Ferwerda, G, Pickkers, P, Hermans, PWM. IFN-gamma-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1. PLoS One 2013; 8:e72249
Google Scholar | Crossref | Medline48. McNamee, EN, Johnson, DK, Homann, D, Clambey, ET. Hypoxia and hypoxia-inducible factors as regulators of T  cell development, differentiation, and function. Immunol Res 2013; 55:

留言 (0)

沒有登入
gif