1. Yao, X, Panichpisal, K, Kurtzman, N, et al. (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334: 115–124. DOI:
10.1097/MAJ.0b013e31812dfe1e.
Google Scholar |
Crossref |
Medline |
ISI2. Pabla, N, Dong, Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73: 994–1007. DOI:
10.1038/sj.ki.5002786.
Google Scholar |
Crossref |
Medline |
ISI3. Mehmood, RK, Parker, J, Ahmed, S, et al. (2014) Review of cisplatin and oxaliplatin in current immunogenic and monoclonal antibodies perspective. World Journal of Oncology 5: 97–108.
Google Scholar |
Medline4. Oberoi, HS, Nukolova, NV, Kabanov, AV, Bronich, TK (2013) Nanocarriers for delivery of platinum anticancer drugs. Adv Drug Deliv Rev 65: 1667–1685.
Google Scholar |
Crossref |
Medline5. Trummer, R, Rangsimawong, W, Sajomsang, W, et al. (2018) Chitosan-based self-assembled nanocarriers coordinated to cisplatin for cancer treatment. RSC Adv 8: 22967–22973.
Google Scholar |
Crossref6. Fard, JK, Hamzeiy, H, Sattari, M, et al. (2016) Triazole rizatriptan induces liver toxicity through lysosomal/mitochondrial dysfunction. Drug Research 66(9): 470–478.
Google Scholar |
Crossref7. Miller, RP, Tadagavadi, RK, Ramesh, G, et al. (2010) Mechanisms of Cisplatin nephrotoxicity. Toxins 2: 2490–2518. DOI:
10.3390/toxins2112490.
Google Scholar |
Crossref |
Medline |
ISI8. Chirino, YI, Pedraza-Chaverri, J (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol : Official Journal of the Gesellschaft Fur Toxikologische Pathologie 61: 223–242.
Google Scholar |
Crossref |
Medline |
ISI9. Kong, D, Zhuo, L, Gao, C, et al. (2013) Erythropoietin protects against cisplatin-induced nephrotoxicity by attenuating endoplasmic reticulum stress-induced apoptosis. J Nephrol 26: 219–227.
Google Scholar |
Crossref |
Medline |
ISI10. Potočnjak, I, Domitrović, R (2016) Carvacrol attenuates acute kidney injury induced by cisplatin through suppression of ERK and PI3K/Akt activation. Food Chem Toxicol 98: 251–261. DOI:
10.1016/j.fct.2016.11.004.
Google Scholar |
Crossref |
Medline11. Duan, B, Zhao, Z, Liao, W, et al. (2017) Antidiabetic effect of tibetan medicine Tang-Kang-Fu-San in db/db Mice via Activation of PI3K/Akt and AMPK Pathways. Front Pharmacol 8: 535.
Google Scholar |
Crossref |
Medline12. Ke, R, Xu, Q, Li, C, et al. (2018) Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int 42: 384–392. DOI:
10.1002/cbin.10915.
Google Scholar |
Crossref |
Medline13. Kim, T-W, Kim, Y-J, Kim, H-T, et al. (2016) NQO1 deficiency leads enhanced autophagy in cisplatin-induced acute kidney injury through the AMPK/TSC2/mTOR Signaling Pathway. Antioxidants Redox Signal 24: 867–883.
Google Scholar |
Crossref |
Medline14. Li, J, Gui, Y, Ren, J, et al. (2016) Metformin protects against cisplatin-induced tubular cell apoptosis and acute kidney injury via AMPKα-regulated autophagy induction. Sci Rep 6(6): 23975. DOI:
10.1038/srep23975.
Google Scholar |
Crossref |
Medline15. Miao, B, Degterev, A (2011) Targeting phospshatidylinositol 3-kinase signaling with novel phosphatidylinositol 3,4,5-triphosphate antagonists. Autophagy 7(6): 650–651. DOI:
10.4161/auto.7.6.15248.
Google Scholar |
Crossref |
Medline16. Reif, S, Lang, A, Lindquist, JN, et al. (2003) The role of focal adhesion kinase-phosphatidylinositol 3-kinase-akt signaling in hepatic stellate cell proliferation and type I collagen expression. J Biol Chem 278: 8083–8090.
Google Scholar |
Crossref |
Medline17. BahramiKhazaei, AM, Khazaei, M, Shahidsales, S, et al. (2017) The therapeutic potential of PI3K/Akt/mTOR inhibitors in breast cancer: rational and progress. J Cell Biochem 119(1): 213–222. DOI:
10.1002/jcb.26136.
Google Scholar |
Crossref |
Medline18. Bian, S, Sun, X, Bai, A, et al. (2013) P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate tumor cell death. PLoS One 8: e60184.
Google Scholar |
Crossref |
Medline19. Ohmori, Y, Hamilton, TA (2001) Requirement for STAT1 in LPS-induced gene expression in macrophages. J Leukoc Biol 69: 598–604.
Google Scholar |
Medline20. Sugawara, I, Yamada, H, Mizuno, S (2004) STAT1 knockout mice are highly susceptible to pulmonary mycobacterial infection. Tohoku J Exp Med 202: 41–50.
Google Scholar |
Crossref |
Medline21. Yoshimura, A (2006) Signal transduction of inflammatory cytokines and tumor development. Cancer Sci 97: 439–447.
Google Scholar |
Crossref |
Medline22. Porta, C, Hadj-Slimane, R, Nejmeddine, M, et al. (2005) Interferons α and γ induce p53-dependent and p53-independent apoptosis, respectively. Oncogene 24: 605–615.
Google Scholar |
Crossref |
Medline23. Kaur, T, Mukherjea, D, Sheehan, K, et al. (2011) Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis 2: e180. DOI:
10.1038/cddis.2011.63.
Google Scholar |
Crossref |
Medline |
ISI24. Yoshioka, T, Kawada, K, Shimada, T, et al. (1979) Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am J Obstet Gynecol 135: 372–376.
Google Scholar |
Crossref |
Medline |
ISI25. Beutler, E, Duron, O, Kelly, BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61(5): 882–888.
Google Scholar |
Medline26. Pfaffl, MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9): 45e–45. 1. DOI:
10.1093/nar/29.9.e45.
Google Scholar |
Crossref |
Medline |
ISI27. Charan, J, Kantharia, N (2013) How to calculate sample size in animal studies?. J Pharmacol Pharmacother 4(4): 303–306. DOI:
10.4103/0976-500X.119726.
Google Scholar |
Crossref |
Medline28. Selvam, NCS, Kumar, RT, Kennedy, LJ, et al. (2011) Comparative study of microwave and conventional methods for the preparation and optical properties of novel MgO-micro and Nano-structures. J Alloys Compd 509(41): 9809–9815.
Google Scholar |
Crossref29. Abdel Ghaffar, AM, Abou El Fadl, FI, El-Sawy, NM (2020) Radiation synthesis of polyvinyl alcohol/acrylic acid/magnesium oxide composite hydrogel for removal of boron from its aqueous solution. J Thermoplast Compos Mater: 1–19. DOI:
10.1177/0892705720925142.
Google Scholar |
SAGE Journals30. Gupta, KC, Ravi Kumar, MN (2001) pH dependent hydrolysis and drug release behavior of chitosan/poly(ethylene glycol) polymer network microspheres. J Mater Sci Mater Med 12(9): 753–759. DOI:
10.1023/a:1017976014534.
Google Scholar |
Crossref |
Medline31. Cha, J, Lee, WB, Park, CR, et al. (2006) Preparation and characterization of cisplatin-incorporated chitosan hydrogels, microparticles, and nanoparticles. Macromol Res 14(5): 573–578.
Google Scholar |
Crossref32. Dupre, TV, Doll, MA, Shah, PP, et al. (2017) Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J Lipid Res 58(7): 1439–1452.
Google Scholar |
Crossref |
Medline33. Pedraza-Chaverri, J, Sánchez-Lozada, LG, Osorio-Alonso, H, et al. (2016) New pathogenic concepts and therapeutic approaches to oxidative stress in chronic kidney disease. Oxidative medicine and cellular longevity 2016: 6043601.
Google Scholar |
Crossref |
Medline34. Liu, H-T, Wang, T-E, Hsu, Y-T, et al (2019) Nanoparticulated honokiol mitigates cisplatin-induced chronic kidney injury by maintaining mitochondria antioxidant capacity and reducing caspase 3-Associated Cellular apoptosis. Antioxidants 8(10): 466.
Google Scholar |
Crossref35. Marullo, R, Werner, E, Degtyareva, N, et al. (2013) Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions. PLoS One 8(11): e81162.
Google Scholar |
Crossref |
Medline36. Leekha, A, Kumar, V, Moin, I, et al. (2019) Modulation of Oxidative Stress by Doxorubicin Loaded Chitosan Nanoparticles. Jcrp 6(2): 76–84.
Google Scholar37. Sahu, BD, Kalvala, AKM, Mahesh Kumar, J, et al. (2014) Ameliorative Effect of Fisetin on Cisplatin-Induced Nephrotoxicity in Rats via Modulation of NF-κB Activation and Antioxidant Defence. PLoS One 9(9): e105070.
Google Scholar |
Crossref |
Medline38. Muñoz-Pinedo, C (2012) Signaling pathways that regulate life and cell death: evolution of apoptosis in the context of self-defense. Adv Exp Med Biol 738: 124–143.
Google Scholar |
Crossref |
Medline |
ISI39. Ahmadian, E, Eftekhari, A, Kavetskyy, T, et al. (2020) Effects of quercetin loaded nanostructured lipid carriers on the paraquat-induced toxicity in human lymphocytes. Pestic Biochem Physiol 167: 104586.
Google Scholar |
Crossref |
Medline40. HuZhang, SY, Zhang, Y, Zhang, M, et al. (2015) Aloperine Protects Mice against Ischemia-Reperfusion (IR)-Induced Renal Injury by Regulating PI3K/AKT/mTOR Signaling and AP-1 Activity. Mol Med (N Y) 21(1): 912–923.
Google Scholar |
Crossref |
Medline41. Zhang, L, Yang, X, Li, X, et al. (2015) Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a. Int J Mol Med 36: 957–966.
Google Scholar |
Crossref |
Medline |
ISI42. Ju, SM, Kang, JG, Bae, JS, et al. (2015) The Flavonoid Apigenin Ameliorates Cisplatin-Induced Nephrotoxicity through Reduction of p53 Activation and Promotion of PI3K/Akt Pathway in Human Renal Proximal Tubular Epithelial Cells. Evid base Compl Alternative Med 2015: 1–9. DOI:
10.1155/2015/186436.
Google Scholar |
Crossref43. Zhang, J-J, Wang, J-Q, Xu, X-Y, et al. (2020) Red ginseng protects against cisplatin-induced intestinal toxicity by inhibiting apoptosis and autophagy via the PI3K/AKT and MAPK signaling pathways. Food & Function 11: 4236–4248.
Google Scholar |
Crossref |
Medline44. Bao, H, Zhang, Q, Liu, X, et al. (2019) Lithium targeting of AMPK protects against cisplatin-induced acute kidney injury by enhancing autophagy in renal proximal tubular epithelial cells. Faseb J 33(12): 14370–14381. DOI:
10.1096/fj.201901712R.
Google Scholar |
Crossref |
Medline45. Zhang, X, Wu, H, Liu, C, et al. (2015) PI3K/Akt/p53 pathway inhibits reovirus infection. Infect Genet Evol 34: 415–422.
Google Scholar |
Crossref |
Medline46. Li, X, Miao, X, Wang, H, et al. (2015) The tissue dependent interactions between p53 and Bcl-2 in vivo. Oncotarget 6: 35699–35709.
Google Scholar |
Crossref |
Medline47. Eftekhari, A, Dizaj, SM, Chodari, L, et al. (2018) The promising future of nano-antioxidant therapy against environmental pollutants induced-toxicities. Biomed Pharmacother 103: 1018–1027.
Google Scholar |
Crossref |
Medline48. Farooq, MA, Aquib, M, Farooq, A, et al. (2019) Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. Artificial Cells, Nanomedicine, and Biotechnology 47(1): 1674–1692.
Google Scholar
留言 (0)