1. Pai, M, Nicol, MP, Boehme, CC. Tuberculosis Diagnostics: State of the Art and Future Directions. Microbiol Spectr 2016; 4(5). doi:
10.1128/microbiolspec.TBTB2-0019-2016 Google Scholar |
Crossref2. Suárez, I, Fünger, S, Krger, S, et al. The diagnosis and treatment of Tuberculosis. Deutsches Ärzteblatt Int 2019; 116: 729–735.
Google Scholar |
Medline3. Hmama, Z, Pena-Diaz, S, Joseph, S, et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev 2015; 264: 220–232.
Google Scholar |
Crossref |
Medline4. Bussi, C, Gutierrez, MG. Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiol Rev 2019; 43: 341–361.
Google Scholar |
Crossref |
Medline5. Lam, A, Prabhu, R, Gross, CM, et al. Role of apoptosis and autophagy in tuberculosis. Am J Physiol Lung Cell Mol Physiol 2017; 313: L218–L229.
Google Scholar |
Crossref |
Medline6. Gutierrez, MG, Master, SS, Singh, SB, et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004; 119: 753–766.
Google Scholar |
Crossref |
Medline |
ISI7. Liang, S, Wang, F, Bao, C, et al. BAG2 Ameliorates endoplasmic reticulum stress-induced cell apoptosis in Mycobacterium tuberculosis-infected macrophages through selective autophagy. Autophagy 2020; 16: 1453–1467.
Google Scholar |
Crossref |
Medline8. Li, M, Cui, J, Niu, W, et al. Long non-coding PCED1B-AS1 regulates macrophage apoptosis and autophagy by sponging miR-155 in active tuberculosis. Biochem Biophys Res Commun 2019; 509: 803–809.
Google Scholar |
Crossref |
Medline9. Kristensen, LS, Andersen, MS, Stagsted, LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019; 20: 675–691.
Google Scholar |
Crossref |
Medline10. Yu, T, Wang, Y, Fan, Y, et al. CircRNAs in cancer metabolism: a review. J Hematol Oncol 2019; 12(1). 90. Published 2019 Sep 4. doi:
10.1186/s13045-019-0776-8 Google Scholar |
Crossref |
Medline11. Li, X, Yang, L, Chen, LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell 2018; 71: 428–442.
Google Scholar |
Crossref |
Medline12. Ojha, R, Nandani, R, Chatterjee, N, Prajapati, VK. Emerging Role of Circular RNAs as Potential Biomarkers for the Diagnosis of Human Diseases. Adv Exp Med Biol. 2018; 1087: 141–157. doi:
10.1007/978-981-13-1426-1_12 Google Scholar |
Crossref |
Medline13. Zhang, X, Zhang, Q, Wu, Q, et al. Integrated analyses reveal hsa_circ_0028883 as a diagnostic biomarker in active tuberculosis. Infect Genet Evol 2020; 83: 104323.
Google Scholar |
Crossref |
Medline14. Fu, Y, Wang, J, Qiao, J, et al. Signature of circular RNAs in peripheral blood mononuclear cells from patients with active tuberculosis. J Cell Mol Med 2019; 23: 1917–1925.
Google Scholar |
Crossref |
Medline15. Huang, Z, Yao, F, Liu, J, et al. Up-regulation of circRNA-0003528 promotes mycobacterium tuberculosis associated macrophage polarization via down-regulating miR-224-5p, miR-324-5p and miR-488-5p and up-regulating CTLA4. Aging (Albany NY) 2020; 12: 25658–25672.
Google Scholar |
Crossref |
Medline16. Zhang, Y, Zhang, X, Zhao, Z, et al. Integrated bioinformatics analysis and validation revealed potential immune-regulatory miR-892b, miR-199b-5p and miR-582-5p as diagnostic biomarkers in active tuberculosis. Microb Pathog 2019; 134: 103563.
Google Scholar |
Crossref |
Medline17. Liu, Y, Jiang, J, Wang, X, et al. miR-582-5p is up-regulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO1. PloS one 2013; 8: e78381. 2013/11/10.
Google Scholar |
Crossref |
Medline18. Daigneault, M, Preston, JA, Marriott, HM, et al. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PloS one 2010; 5: e8668. 2010/01/20.
Google Scholar |
Crossref |
Medline |
ISI19. Li, Q, Fang, Y, Zhu, P, et al. Burkholderia pseudomallei survival in lung epithelial cells benefits from miRNA-mediated suppression of ATG10. Autophagy 2015; 11: 1293–1307. 2015/07/08.
Google Scholar |
Crossref |
Medline20. Sollai, S, Galli, L, de Martino, M, et al. Systematic review and meta-analysis on the utility of interferon-gamma release assays for the diagnosis of Mycobacterium tuberculosis infection in children: a 2013 update. BMC Infect Dis 2014; 14: S6.
Google Scholar |
Crossref |
Medline21. Furlow, B . Tuberculosis: a review and update. Radiol Technol 2010; 82: 33–52.
Google Scholar |
Medline22. Kumar, SV, Deka, MK, Bagga, M, et al. A systematic review of different type of tuberculosis. Eur Rev Med Pharmacol Sci 2010; 14: 831–843.
Google Scholar |
Medline23. Strong, EJ, Jurcic Smith, KL, Saini, NK, Ng, TW, Porcelli, SA, Lee, S. Identification of Autophagy-Inhibiting Factors of Mycobacterium tuberculosis by High-Throughput Loss-of-Function Screening. Infect Immun 2020; 88(12): e00269-20. Published 2020 Nov 16. doi:
10.1128/IAI.00269-20 Google Scholar |
Crossref |
Medline24. Moraco, AH, Kornfeld, H. Cell death and autophagy in tuberculosis. Semin Immunol 2014; 26: 497–511.
Google Scholar |
Crossref |
Medline25. Franco, LH, Nair, VR, Scharn, CR, et al. The ubiquitin ligase Smurf1 functions in selective autophagy of Mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe 2017; 22: 421–423.
Google Scholar |
Crossref |
Medline26. Hu, Y, Wen, Z, Liu, S, et al. Ibrutinib suppresses intracellular mycobacterium tuberculosis growth by inducing macrophage autophagy. J Infect 2020; 80: e19–e26.
Google Scholar |
Crossref |
Medline27. Yi, Z, Gao, K, Li, R, et al. Dysregulated circRNAs in plasma from active tuberculosis patients. J Cell Mol Med 2018; 22: 4076–4084.
Google Scholar |
Crossref |
Medline28. Luo, HL, Peng, Y, Luo, H, et al. Circular RNA hsa_circ_0001380 in peripheral blood as a potential diagnostic biomarker for active pulmonary tuberculosis. Mol Med Rep 2020; 21: 1890–1896.
Google Scholar |
Medline29. Huang, Z, Su, R, Qing, C, et al. Plasma circular RNAs hsa_circ_0001953 and hsa_circ_0009024 as diagnostic biomarkers for active Tuberculosis. Front Microbiol 2018; 9: 2010.
Google Scholar |
Crossref |
Medline30. Shi, Q, Wang, J, Yang, Z, et al. CircAGFG1modulates autophagy and apoptosis of macrophages infected by Mycobacterium tuberculosis via the notch signaling pathway. Ann Transl Med 2020; 8: 45.
Google Scholar |
Crossref |
Medline31. Liu, F, Chen, J, Wang, P, et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun 2018; 9: 4295.
Google Scholar |
Crossref |
Medline
留言 (0)